cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291486 Decimal expansion of Gamma''''(1).

Original entry on oeis.org

2, 3, 5, 6, 1, 4, 7, 4, 0, 8, 4, 0, 2, 5, 6, 0, 4, 4, 9, 6, 0, 7, 3, 1, 2, 7, 0, 5, 6, 5, 2, 4, 4, 2, 0, 4, 0, 8, 6, 5, 3, 7, 6, 8, 3, 1, 3, 3, 6, 3, 1, 6, 9, 9, 6, 9, 7, 1, 8, 9, 7, 8, 9, 3, 4, 2, 5, 2, 5, 6, 4, 1, 4, 1, 9, 6, 8, 6, 4, 2, 8, 2, 2, 5, 8, 5, 4, 3, 4, 4, 9, 2, 4, 5, 0, 1, 6, 9, 5, 8, 2, 9, 4, 1, 2, 4, 1, 6, 0, 9, 0
Offset: 2

Views

Author

Robert G. Wilson v, Aug 24 2017

Keywords

Examples

			23.56147408402560449607312705652442040865376831336316996971897893425256...
		

Crossrefs

Cf. A000796 (Pi), A001620 (EulerGamma), A002117 (zeta(3)), A081855, A261509.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^4 + EulerGamma(R)^2*Pi(R)^2 + 8*EulerGamma(R)*Evaluate(L,3) + 3*Pi(R)^4/20; // G. C. Greubel, Sep 07 2018
  • Maple
    c:= subs(x=1.0, diff(GAMMA(x), x$4)):
    evalf(c, 120);  # Alois P. Heinz, Jul 01 2023
  • Mathematica
    RealDigits[Gamma''''[1], 10, 111][[1]]
  • PARI
    default(realprecision, 100); Euler^4 + Euler^2*Pi^2 + 8*Euler*zeta(3) + 3*Pi^4/20 \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals EulerGamma^4 + EulerGamma^2*Pi^2 + 8*EulerGamma*Zeta(3) + 3*Pi^4/20.
Equals Integral_{x=0..oo} exp(-x)*log(x)^4 dx. - Amiram Eldar, Aug 06 2020