cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291539 a(n) = PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), where PrimePi = A000720.

Original entry on oeis.org

0, 2, 1, 6, 3, 14, 8, 25, 41, 68, 67, 99, 93, 136, 188, 240, 229, 303, 306, 383, 467, 562, 566, 688, 795, 922, 1066, 1227, 1247, 1421, 1446, 1620, 1826, 2036, 2283, 2511, 2566, 2843, 3115, 3401, 3431, 3746, 3827, 4163, 4526, 4895, 4981, 5369, 5743, 6229, 6712, 7165, 7202, 7743, 8258, 8835, 9453, 9999, 10132, 10736
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

All terms are positive except a(1) = 0, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n^3) > PrimePi(n) * PrimePi(n)^2 for n > 1.
For PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, see A291540.
For PrimePi(n^3) - PrimePi(n)^3, see A291538.
For prime(n) * prime(n^2) - prime(n^3), see A291541.

Examples

			a(2) = PrimePi(2^3) - PrimePi(2) * PrimePi(2^2) = 4 - 1 * 2 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[n^3] - PrimePi[n]*PrimePi[n^2], {n, 60}]
  • PARI
    a(n) = primepi(n^3) - primepi(n) * primepi(n^2); \\ Michel Marcus, Sep 10 2017

Formula

a(n) = A000720(n^3) - A000720(n) * A000720(n)^2.
a(n) = A291538(n) - A291540(n).
a(n) ~ (n^3 / log(n))*(1/3 - 1/(2*log(n)^2)) as n tends to infinity.