cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A291440 a(n) = pi(n^2) - pi(n)^2, where pi(n) = A000720(n).

Original entry on oeis.org

0, 1, 0, 2, 0, 2, -1, 2, 6, 9, 5, 9, 3, 8, 12, 18, 12, 17, 8, 14, 21, 28, 18, 24, 33, 41, 48, 56, 46, 54, 41, 51, 60, 70, 79, 89, 75, 84, 96, 107, 94, 105, 87, 99, 110, 123, 104, 117, 132, 142, 153, 168, 153, 165, 178, 189, 201, 218, 198, 214, 195, 208, 225, 240, 254, 270, 248, 263, 280, 293, 275, 290, 264, 281, 298, 316, 338, 352, 327, 350
Offset: 1

Views

Author

Jonathan Sondow, Aug 23 2017

Keywords

Comments

The only zero values are a(1) = a(3) = a(5) = 0. The only negative value is a(7) = -1. In particular, pi(n^2) > pi(n)^2 for n > 7. These can be proved by the PNT with error term for large n and computation for smaller n.
For prime(n)^2 - prime(n^2), see A123914.
For pi(n^3) - pi(n)^3, see A291538.
Mincu and Panaitopol (2008) prove that pi(m*n) >= pi(m)*pi(n) for all positive m and n except for m = 5, n = 7; m = 7, n = 5; and m = n = 7. This implies for m = n that a(n) >= 0 if n <> 7. - Jonathan Sondow, Nov 03 2017
Diagonal of the triangular array A294508. - Jonathan Sondow and Robert G. Wilson v, Nov 08 2017

Examples

			a(7) = pi(7^2) - pi(7)^2 = 15 - 4^2 = -1.
		

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(n^2)-#PrimesUpTo(n)^2: n in [1..80]]; // Vincenzo Librandi, Aug 26 2017
    
  • Maple
    seq(numtheory:-pi(n^2)-numtheory:-pi(n)^2, n=1..100); # Robert Israel, Aug 25 2017
  • Mathematica
    Table[PrimePi[n^2] - PrimePi[n]^2, {n, 80}]
  • PARI
    a(n) = primepi(n^2) - primepi(n)^2; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = A000720(n^2) - A000720(n)^2.
a(n) ~ (n^2 / log(n))*(1/2 - 1/log(n)) as n tends to infinity, by the PNT.
From Jonathan Sondow and Robert G. Wilson v, Nov 08 2017: (Start)
a(n) = A294508(n*(n+1)/2).
a(n) >= A294509(n). (End)

A291538 a(n) = PrimePi(n^3) - PrimePi(n)^3, where PrimePi = A000720.

Original entry on oeis.org

0, 3, 1, 10, 3, 20, 4, 33, 65, 104, 92, 144, 111, 184, 260, 348, 313, 422, 370, 495, 635, 786, 728, 904, 1092, 1291, 1498, 1731, 1707, 1961, 1897, 2181, 2486, 2806, 3152, 3490, 3466, 3851, 4267, 4685, 4653, 5111, 5045, 5549, 6066, 6617, 6541, 7124, 7723, 8359, 9007, 9685, 9650, 10383, 11106, 11859, 12669, 13487, 13498, 14374
Offset: 1

Views

Author

Jonathan Sondow, following a suggestion from Altug Alkan, Aug 25 2017

Keywords

Comments

All terms are positive except a(1) = 0, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n^3) > PrimePi(n)^3 for n > 1. Indeed, by A291539 and A291540, PrimePi(n^3) > PrimePi(n) * PrimePi(n^2) > PrimePi(n)^3 for n > 7.
For prime(n)^3 - prime(n^3), see A262199.
For PrimePi(n^2) - PrimePi(n)^2, see A291440.

Examples

			a(3) = PrimePi(3^3) - PrimePi(3)^3 = 9 - 2^3 = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[n^3] - PrimePi[n]^3, {n, 60}]
  • PARI
    a(n) = primepi(n^3) - primepi(n)^3; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = A000720(n^3) - A000720(n)^3.
a(n) = A291539(n) + A291540(n).
a(n) ~ (n^3 / log(n))*(1/3 - 1/log(n)^2) as n tends to infinity.

A291542 a(n) = prime(n)^3 - prime(n) * prime(n^2).

Original entry on oeis.org

4, 6, 10, -28, 264, 234, 1054, 950, 2530, 8700, 9300, 20054, 27552, 28208, 36754, 63070, 94518, 96258, 137484, 163300, 163958, 219620, 256138, 330190, 462884, 520150, 524270, 582294, 588600, 652236, 1086612, 1179000, 1374384, 1387220, 1828230, 1838274, 2092496, 2366760, 2529382, 2842390
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

Same as prime(n) * A123914(n). See A123914 for other comments and formulas.
All terms are even.
For prime(n)^3 - prime(n^3) see A262199.
For prime(n) * prime(n^2) - prime(n^3) see A291541.
For PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3 see A291540.

Examples

			a(4) = prime(4)^3 - prime(4) * prime(16) = 7^3 - 7*53 = -28.
		

Crossrefs

Programs

  • Maple
    seq(ithprime(n)^3 - ithprime(n)*ithprime(n^2), n=1..100); # Robert Israel, Sep 11 2017
  • Mathematica
    Table[ Prime[n]^3 - Prime[n] * Prime[n^2], {n, 40}]
  • PARI
    a(n) = prime(n)^3 - prime(n) * prime(n^2); \\ Michel Marcus, Sep 10 2017

Formula

a(n) + A291541(n) = A262199(n).

A291540 a(n) = PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, where PrimePi = A000720.

Original entry on oeis.org

0, 1, 0, 4, 0, 6, -4, 8, 24, 36, 25, 45, 18, 48, 72, 108, 84, 119, 64, 112, 168, 224, 162, 216, 297, 369, 432, 504, 460, 540, 451, 561, 660, 770, 869, 979, 900, 1008, 1152, 1284, 1222, 1365, 1218, 1386, 1540, 1722, 1560, 1755, 1980, 2130, 2295, 2520, 2448, 2640, 2848, 3024, 3216, 3488, 3366, 3638, 3510, 3744, 4050, 4320, 4572
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

All terms are positive except a(1) = a(3) = a(5) = 0 and a(7) = -4, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n) * PrimePi(n^2) > PrimePi(n)^3, for n > 7.
For PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), see A291539.
For PrimePi(n^3) - PrimePi(n)^3, see A291538.
For prime(n)^3 - prime(n) * prime(n^2), see A291542.

Examples

			a(7) = PrimePi(7) * PrimePi(7^2) - PrimePi(7)^3 = 4 * 15 - 4^3 = -4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[n] * PrimePi[n^2] - PrimePi[n]^3, {n, 65}]
  • PARI
    a(n) = primepi(n) * primepi(n^2) - primepi(n)^3; \\ Michel Marcus, Sep 10 2017

Formula

A291539(n) + a(n) = A291538(n).

A291541 a(n) = prime(n) * prime(n^2) - prime(n^3).

Original entry on oeis.org

2, 2, 12, 60, 376, 642, 1550, 2238, 4118, 7770, 9534, 15846, 21966, 26490, 35750, 46934, 63204, 73164, 94248, 112812, 128922, 161128, 185576, 225062, 278260, 315108, 347596, 393898, 426998, 478078, 614064, 682998, 769800, 827466, 962166, 1036806, 1156866, 1286448, 1390878, 1534754
Offset: 1

Views

Author

Jonathan Sondow, Aug 25 2017

Keywords

Comments

All terms are even.
For prime(n)^3 - prime(n^3) see A262199.
For prime(n)^3 - prime(n) * prime(n^2) see A291542.
For PrimePi(n^3) - PrimePi(n) * PrimePi(n^2) see A291539.

Examples

			a(2) = prime(2) * prime(4) - prime(8) = 3*7 - 19 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ Prime[n] * Prime[n^2] - Prime[n^3], {n, 40}]
  • PARI
    a(n) = prime(n) * prime(n^2) - prime(n^3); \\ Michel Marcus, Sep 10 2017

Formula

A291542(n) + a(n) = A262199(n).

A304483 a(n) = pi(n)*pi(2n), where pi is A000720: the prime counting function.

Original entry on oeis.org

0, 2, 6, 8, 12, 15, 24, 24, 28, 32, 40, 45, 54, 54, 60, 66, 77, 77, 96, 96, 104, 112, 126, 135, 135, 135, 144, 144, 160, 170, 198, 198, 198, 209, 209, 220, 252, 252, 252, 264, 286, 299, 322, 322, 336, 336, 360, 360, 375, 375, 390, 405, 432, 448, 464, 464, 480, 480, 510
Offset: 1

Views

Author

Jason Kimberley, May 13 2018

Keywords

Crossrefs

Programs

Showing 1-6 of 6 results.