A123914 a(n) = prime(n)^2 - prime(n^2). Commutator of (primes, squares) at n.
2, 2, 2, -4, 24, 18, 62, 50, 110, 300, 300, 542, 672, 656, 782, 1190, 1602, 1578, 2052, 2300, 2246, 2780, 3086, 3710, 4772, 5150, 5090, 5442, 5400, 5772, 8556, 9000, 10032, 9980, 12270, 12174, 13328, 14520, 15146, 16430, 17714, 17660, 20604, 20502, 21200
Offset: 1
Examples
a(1) = prime(1)^2 - prime(1^2) = prime(1)^2 - prime(1^2) = 4 - 2 = 2. a(2) = prime(2)^2 - prime(2^2) = prime(2)^2 - prime(2^2) = 9 - 7 = 2. a(3) = prime(3)^2 - prime(3^2) = prime(3)^2 - prime(3^2) = 25 - 23 = 2. a(4) = prime(4)^2 - prime(4^2) = prime(4)^2 - prime(4^2) = 49 - 53 = -4. a(5) = prime(5)^2 - prime(5^2) = prime(5)^2 - prime(5^2) = 121 - 97 = 24.
References
- See A324799 for references. - N. J. A. Sloane, Sep 11 2019
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..500 from G. C. Greubel)
Programs
-
Magma
[NthPrime(n)^2 - NthPrime(n^2): n in [1..60]]; // Vincenzo Librandi, Sep 16 2015
-
Mathematica
f[n_] := Prime[n]^2 - Prime[n^2]; Array[f, 45] (* Robert G. Wilson v, Oct 29 2006 *) Table[(Prime[n])^2 - Prime[n^2], {n,1,300}] (* G. C. Greubel, Sep 15 2015 *)
-
PARI
vector(100, n, prime(n)^2 - prime(n^2)) \\ Altug Alkan, Oct 05 2015
Formula
Extensions
More terms from Robert G. Wilson v, Oct 29 2006
Comments