cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291552 Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) is the number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 5, 11, 25, 52, 110, 221, 444, 868, 1685, 3212, 6082, 11361, 21071, 38693, 70570, 127670, 229557, 409963, 728069, 1285522, 2258318, 3947115, 6867238, 11893648, 20513199, 35235429, 60292928, 102787903, 174620017, 295644893, 498931699, 839367287, 1407864040, 2354559426, 3926878130
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

Partial sums of A001970.

Examples

			Equivalently (Cayley), a(n) = total number of 2-dimensional partitions of all nonnegative integers <= n.
a(3) = 11 because we have:
0...1...2.11.1...3.21.2.111.11.1
.............1........1.....1..1
...............................1
and 1 + 1 + 3 + 6 = 11.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 11 2017
  • Mathematica
    nmax = 36; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) = [x^k] Product_{k>=1} 1/(1 - x^k).