A291656 Square array T(n,k), n>=0, k>=0, read by antidiagonals: T(n,k) = ((2n-1)!!)^k * Sum_{i=1..n} 1/(2*i-1)^k.
0, 0, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 10, 23, 4, 0, 1, 28, 259, 176, 5, 0, 1, 82, 3527, 12916, 1689, 6, 0, 1, 244, 51331, 1213136, 1057221, 19524, 7, 0, 1, 730, 762743, 123296356, 885533769, 128816766, 264207, 8, 0, 1, 2188, 11406979, 12820180976, 809068942341, 1179489355164, 21878089479, 4098240, 9
Offset: 0
Examples
Square array begins: 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, ... 2, 4, 10, 28, 82, ... 3, 23, 259, 3527, 51331, ... 4, 176, 12916, 1213136, 123296356, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..54, flattened
Crossrefs
Formula
T(0,k) = 0, T(1,k) = 1 and T(n+1, k) = ((2*n-1)^k+(2*n+1)^k) * T(n, k) - (2*n-1)^(2*k) * T(n-1, k).