cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291591 Numbers k such that there exist exactly five distinct Pythagorean triangles, at least one of them primitive, with area k.

Original entry on oeis.org

71831760, 73513440, 1675212000, 6913932480, 4323749790360, 2678930100000, 175434192299520, 503151375767040
Offset: 1

Views

Author

Sture Sjöstedt, Aug 27 2017

Keywords

Comments

I solve x^2 + 3*y^2 = (2*r)^2 over the positive integers. q, r, q-p and p are the y-coordinates in the first quadrant. Area = q*r*(q-p)*p. There are three Pythagorean triangles with this area. j, x, y with x > y and Area = j^2*x*y*(x-y)*(x+y) gives the area of an Pythagorean triangle.
Example: r = 169 in x^2 + 3*y^2 = (2*169)^2 gives q = 176, r = 169, q-p = 161 and p = 15;
k = q*r*(q-p)*p = 176*169*161*15 = 71831760.
j = 26, x = 23, y = 12 and j = 26, x = 28, y = 5 gives two Pythagorean triangles with k = 71831760;
k = 676*23*12*11*35 = 71831760 and k = 676*28*5*23*33 = 71831760.

Examples

			p^2 - p*q + q^2 = r^2;
p = 115, q = 448, q-p = 333, r = 403;
k = p*q*(q-p)*r = 115*448*333*403 = 6913932480.
x = 414, y = 104 and x = 558, y = 40 gives the same area.
k = x*y*(x-y)*(x+y) = 414*104*310*518 = 6913932480.
k = x*y*(x-y)*(x+y) = 558*40*518*598 = 6913932480.
		

Crossrefs

Cf. A055193.

Extensions

a(2), a(4)-a(7) from Giovanni Resta, Aug 28 2017
Missing term 73513440 inserted by Miguel-Ángel Pérez García-Ortega, Jul 19 2021