cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292521 a(n) = a(n-2) - 2a(n-3) + a(n-4) for n>3, with a(0)=2, a(1)=0, a(2)=1, a(3)=-1, a sequence related to Pellian numbers.

Original entry on oeis.org

2, 0, 1, -1, 3, -3, 6, -10, 15, -25, 41, -65, 106, -172, 277, -449, 727, -1175, 1902, -3078, 4979, -8057, 13037, -21093, 34130, -55224, 89353, -144577, 233931, -378507, 612438, -990946, 1603383, -2594329, 4197713, -6792041, 10989754, -17781796, 28771549, -46553345
Offset: 0

Views

Author

Keywords

Comments

Successive differences begin:
2, 0, 1, -1, 3, -3, 6, -10, 15, -25, ... = a(n)
-2, 1, -2, 4, -6, 9, -16, 25, -40, 66, ... = b(n)
3, -3, 6, -10, 15, -25, 41, -65, 106, -172, ... = a(n+4)
-6, 9, -16, 25, -40, 66, -106, 171, -278, 449, ... = b(n+4)
15, -25, 41, -65, 106, -172, 277, -449, 727, -1175, ... = a(n+8)
...
Main diagonal [2] 1, 6, 25, 106, 449, ... (omitting first term) is A048875 (Pellian numbers with second term 6).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, -2, 1}, {2, 0, 1, -1}, 40]
  • PARI
    x='x+O('x^99); Vec((2-x^2+3*x^3)/(1-x^2+2*x^3-x^4)) \\ Altug Alkan, Sep 18 2017

Formula

G.f.: (2 - x^2 + 3*x^3) / (1 - x^2 + 2*x^3 - x^4).
a(n) = A291660(-n) (negative indices computed using A291660 sequence function).
a(n) = (1/15)*2^(n-1)*((9*sqrt(5)+30)/(1+sqrt(5))^n + (30-9*sqrt(5))/(1- sqrt(5))^n - 5*sqrt(3)*2^(1-n)*sin(n*Pi/3)).

A292616 a(n) = 3*a(n-2) - a(n-4) for n > 3, with a(0)=4, a(1)=3, a(2)=a(3)=6, a sequence related to bisections of Fibonacci numbers.

Original entry on oeis.org

4, 3, 6, 6, 14, 15, 36, 39, 94, 102, 246, 267, 644, 699, 1686, 1830, 4414, 4791, 11556, 12543, 30254, 32838, 79206, 85971, 207364, 225075, 542886, 589254, 1421294, 1542687, 3720996, 4038807, 9741694, 10573734, 25504086, 27682395, 66770564, 72473451, 174807606, 189737958
Offset: 0

Views

Author

Keywords

Comments

The "Pisano" periods, i.e., the periods of this sequence mod n, begin: 1, 6, 8, 6, 20, 24, 16, 12, 24, 60, 5, 24, ..., a sequence which is not in the OEIS. Period 5 for mod 11 seems to be the only odd period > 1 (checked up to 1000 terms).

Crossrefs

Programs

  • GAP
    a := [4,3,6,6];; for n in [5..10^2] do a[n] := 3 * a[n-2] - a[n-4]; od; A292616 := a; #  Muniru A Asiru, Oct 31 2017
  • Maple
    A292616 := gfun:-rectoproc({a(n) = 3 * a(n-2) - a(n-4), a(0) = 4,a(1) = 3,a(2) = 6, a(3) = 6}, a(n), remember):  map(A292616, [$0..10^3]);  # Muniru A Asiru, Oct 16 2017
  • Mathematica
    LinearRecurrence[{0, 3, 0, -1}, {4, 3, 6, 6}, 40]
    (* Or, recomputing from Fibonacci numbers: *)
    Join[{4, -1, 3}, Flatten[Table[{Fibonacci[2*n], Fibonacci[2*n+6]}, {n, 0, 18} ]]] // Accumulate

Formula

G.f.: (4 + 3*x - 6*x^2 - 3*x^3)/(1 - 3*x^2 + x^4).
a(n) = A291660(n) + A292521(n).
a(n) = (1/20)*((25 - 13*sqrt(5))*((1/2)*(-1 - sqrt(5)))^n + (5 - 7*sqrt(5)) *((1/2)*(1 - sqrt(5)))^n + ((1/2)*(1 + sqrt(5)))^n*(5 + 7*sqrt(5)) + ((1/2)*(-1 + sqrt(5)))^n*(25 + 13*sqrt(5))).
a(2n+1) = 3*A001519(n+1).
a(2n+1) = a(2n) + A001906(n-1).
Showing 1-2 of 2 results.