A291694 Array of Markov triples (x,y,z) sorted by z, read by rows.
1, 1, 1, 1, 1, 2, 1, 2, 5, 1, 5, 13, 2, 5, 29, 1, 13, 34, 1, 34, 89, 2, 29, 169, 5, 13, 194, 1, 89, 233, 5, 29, 433, 1, 233, 610, 2, 169, 985, 13, 34, 1325, 1, 610, 1597, 5, 194, 2897, 1, 1597, 4181, 2, 985, 5741, 5, 433, 6466, 13, 194, 7561, 34, 89, 9077, 1, 4181, 10946, 29, 169, 14701
Offset: 1
Examples
The array of Markov triples begins: (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), ...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.31.3 Markov-Hurwitz Equation, p. 200.
Links
- Eric Weisstein's World of Mathematics, Markov Number.
- Wikipedia, Markov number.
Programs
-
Mathematica
triples = 30; depth0 = 10 (* adjust depth according to message after first run *) ; Clear[zz, fx, fy]; fx[1] = fy[1] = fx[2] = fy[2] = fx[5] = 1; fy[5] = 2; zz[n_] := zz[n] = Module[{f, x, y, z}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, x = g[[1]]; y = g[[3]]; z = 3*g[[1]]*g[[3]] - g[[2]]; fx[z] = x; fy[z] = y; {x, y, z}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, x = g[[2]]; y = g[[3]]; z = 3*g[[2]]*g[[3]] - g[[1]]; fx[z] = x; fy[z] = y; {x, y, z}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, triples]&]; zz[n = depth0]; zz[n++]; While[zz[n] != zz[n - 1], n++]; Print["depth = n = ", n]; xyz = {fx[#], fy[#], #} & /@ zz[n]; Flatten[xyz]
-
PARI
N=5000; for(k=1, N, for(j=1, k, for(i=1, j, if(i*j>k, break); if(i^2+j^2+k^2==3*i*j*k, print1(i, ", ", j, ", ", k, ", "))))); \\ Seiichi Manyama, Feb 16 2022
Comments