cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291698 a(n) = [x^n] Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 1, 2, 12, 20, 55, 294, 497, 1224, 2520, 14410, 21912, 54300, 104286, 220710, 1105215, 1697552, 3839382, 7356762, 14873580, 26275620, 132112596, 188666126, 423247104, 772560600, 1535398150, 2632049290, 4975242048, 21273166572, 30649985160, 64824339630, 116604788800, 223181224992
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

The number of partitions of n into distinct parts where each part can be colored in n different ways. For example, there are 4 partitions of 6 into distinct parts, namely 6, 5 + 1, 4 + 2 and 3 + 2 + 1; allowing for the colorings gives a(6) = 6 + 6*6 + 6*6 + 6*6*6 = 294. - Peter Bala, Aug 31 2017

Crossrefs

Main diagonal of A286957.

Programs

  • Maple
    seq(coeff(mul(1+n*x^k,k=1..n),x,n),n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + n x^k, {k, 1, n}], {x, 0, n}], {n, 0, 32}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/(1 + n), {x, 0, n}], {n, 0, 32}]

Formula

a(n) = A286957(n,n).
a(n) == 0 (mod n); a(n) == n (mod n^2). - Peter Bala, Aug 31 2017
Conjecture: a(n) ~ exp(sqrt(2*(log(n)^2 + Pi^2/3)*n)) * (log(n)^2 + Pi^2/3)^(1/4) / (sqrt(Pi) * (2*n)^(5/4)). - Vaclav Kotesovec, Sep 15 2017