A302942 a(n) = (2^n-1)^2*(2^n + 2).
0, 4, 54, 490, 4050, 32674, 261954, 2096770, 16776450, 134216194, 1073738754, 8589928450, 68719464450, 549755789314, 4398046461954, 35184371990530, 281474976514050, 2251799813292034, 18014398508695554, 144115188074283010, 1152921504603701250, 9223372036848484354
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (11,-26,16).
Crossrefs
Cf. A291703.
Programs
-
Mathematica
Table[(2^n - 1)^2 (2^n + 2), {n, 0, 30}] LinearRecurrence[{11, -26, 16}, {4, 54, 490}, {0, 20}] CoefficientList[Series[-((2 x (2 + 5 x))/(-1 + 11 x - 26 x^2 + 16 x^3)), {x, 0, 20}], x]
Formula
a(n) = A291703(n) for n > 1.
a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3).
G.f.: -2*x*(2 + 5*x)/(-1 + 11*x - 26*x^2 + 16*x^3).
Comments