cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291717 Triangle T(m,k) read by rows, where T(m,k) is the number of ways in which 1 <= k <= m positions can be picked in an m X m square grid such that the picked positions have a central symmetry.

Original entry on oeis.org

1, 4, 6, 9, 36, 8, 16, 120, 24, 168, 25, 300, 72, 714, 178, 36, 630, 144, 2273, 464, 6576, 49, 1176, 288, 5932, 1476, 24288, 6404, 64, 2016, 480, 13536, 3040, 74560, 15680, 341320, 81, 3240, 800, 27860, 6940, 197600, 50860, 1170466, 314862
Offset: 1

Views

Author

Hugo Pfoertner, Sep 08 2017

Keywords

Examples

			A configuration of 6 picked points from a 7 X 7 grid with a central (point) symmetry w.r.t. point #, but no line (mirror) symmetry and thus only contributing to T(7,6)=a(27), but not to A291718(27), would be:
  o o o X o o o
  o o o o o o o
  o o o o X o o
  o X # X o o o
  X o o o o o o
  o o o o o o o
  o X o o o o o
.
Triangle begins:
   1;
   4,    6;
   9,   36,   8;
  16,  120,  24,   168;
  25,  300,  72,   714,  178;
  36,  630, 144,  2273,  464,  6576;
  49, 1176, 288,  5932, 1476, 24288,  6404;
  64, 2016, 480, 13536, 3040, 74560, 15680, 341320;
		

Crossrefs

Programs

  • Mathematica
    decentralize[v_] := 2*Total[v] - Last[v];
    T[n_, k_] := decentralize[ Table[ decentralize[ Table[ If[EvenQ[k] || OddQ[a*b], Binomial[ Quotient[a*b, 2], Quotient[k, 2]], 0], {b, 1, n}]], {a, 1, n}]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
  • PARI
    decentralize(v) = 2*vecsum(v) - v[length(v)];
    T(n,k) = decentralize(vector(n, a, decentralize(vector(n, b, if(k%2==0||a*b%2==1, binomial(a*b\2, k\2))))));
    for(n=1,10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 16 2017

Extensions

Terms a(37) and beyond from Andrew Howroyd, Sep 16 2017