A291717 Triangle T(m,k) read by rows, where T(m,k) is the number of ways in which 1 <= k <= m positions can be picked in an m X m square grid such that the picked positions have a central symmetry.
1, 4, 6, 9, 36, 8, 16, 120, 24, 168, 25, 300, 72, 714, 178, 36, 630, 144, 2273, 464, 6576, 49, 1176, 288, 5932, 1476, 24288, 6404, 64, 2016, 480, 13536, 3040, 74560, 15680, 341320, 81, 3240, 800, 27860, 6940, 197600, 50860, 1170466, 314862
Offset: 1
Examples
A configuration of 6 picked points from a 7 X 7 grid with a central (point) symmetry w.r.t. point #, but no line (mirror) symmetry and thus only contributing to T(7,6)=a(27), but not to A291718(27), would be: o o o X o o o o o o o o o o o o o o X o o o X # X o o o X o o o o o o o o o o o o o o X o o o o o . Triangle begins: 1; 4, 6; 9, 36, 8; 16, 120, 24, 168; 25, 300, 72, 714, 178; 36, 630, 144, 2273, 464, 6576; 49, 1176, 288, 5932, 1476, 24288, 6404; 64, 2016, 480, 13536, 3040, 74560, 15680, 341320;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
decentralize[v_] := 2*Total[v] - Last[v]; T[n_, k_] := decentralize[ Table[ decentralize[ Table[ If[EvenQ[k] || OddQ[a*b], Binomial[ Quotient[a*b, 2], Quotient[k, 2]], 0], {b, 1, n}]], {a, 1, n}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
PARI
decentralize(v) = 2*vecsum(v) - v[length(v)]; T(n,k) = decentralize(vector(n, a, decentralize(vector(n, b, if(k%2==0||a*b%2==1, binomial(a*b\2, k\2)))))); for(n=1,10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 16 2017
Extensions
Terms a(37) and beyond from Andrew Howroyd, Sep 16 2017