cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291728 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 2, 4, 9, 17, 35, 70, 142, 285, 576, 1160, 2340, 4716, 9510, 19171, 38653, 77926, 157110, 316747, 638599, 1287479, 2595698, 5233196, 10550681, 21271280, 42885152, 86460984, 174314476, 351436368, 708532813, 1428476905, 2879960190, 5806303628, 11706120825
Offset: 0

Views

Author

Clark Kimberling, Sep 08 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,0,1,0,0,0,0,...) = A154272, in some cases t(1,0,1,0,0,0,0,...) is a shifted (or differently indexed) version of the indicated sequence:
***
p(S) t(1,0,1,0,0,0,0,...)
1 - S A000930 (Narayana's cows sequence)
1 - S^2 A002478 (except for 0's)
1 - S^3 A291723
1 - S^5 A291724
(1 - S)^2 A291725
(1 - S)^3 A291726
(1 - S)^4 A291727
1 - S - S^2 A291728
1 - 2S - S^2 A291729
1 - 2S - 2S^2 A291730
(1 - 2S)^2 A291732
(1 - S)(1 - 2S) A291734
1 - S - S^3 A291735
1 - S^2 - S^3 A291736
1 - S - S^2 - S^3 A291737
1 - S - S^4 A291738
1 - S^3 - S^6 A291739
(1 - S)(1 - S^2) A291740
(1 - S)(1 + S^2) A291741

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291728 *)

Formula

G.f.: (-1 - x - x^2 - 2 x^3 - x^5)/(-1 + x + x^2 + x^3 + 2 x^4 + x^6).
a(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-6) for n >= 7.