cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A305433 Restricted growth sequence transform of ordered pair [A278222(A305295(n)), A278222(A291763(n))], constructed from runlengths of 1-digits and 2-digits in base-3 representation of A245612(n).

Original entry on oeis.org

1, 2, 3, 1, 4, 5, 6, 7, 8, 3, 4, 9, 10, 2, 3, 2, 11, 12, 13, 14, 15, 8, 16, 10, 17, 14, 18, 5, 14, 19, 9, 3, 20, 21, 22, 23, 24, 25, 10, 16, 26, 27, 28, 29, 21, 10, 30, 31, 32, 29, 10, 19, 33, 15, 34, 6, 15, 14, 3, 14, 29, 3, 35, 1, 36, 37, 38, 39, 40, 21, 41, 42, 43, 44, 45, 27, 29, 46, 47, 48, 49, 50, 51, 50, 52, 53, 54, 55, 56, 10, 33, 33, 54, 10, 14
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2018

Keywords

Comments

Restricted growth sequence transform of A290093(A245612(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289813
    A305295(n) = A289813(A245612(n));
    A291763(n) = A289814(A245612(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux305433(n) = [A278222(A305295(n)), A278222(A291763(n))];
    v305433 = rgs_transform(vector(65538,n,Aux305433(n-1)));
    A305433(n) = v305433[1+n];

A305298 Restricted growth sequence transform of A291763, formed from 2-digits in ternary representation of A291763(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 3, 1, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 8, 12, 9, 13, 8, 14, 1, 2, 1, 3, 8, 2, 15, 16, 17, 18, 7, 19, 20, 2, 21, 3, 22, 23, 9, 16, 1, 24, 25, 6, 1, 12, 11, 3, 26, 2, 4, 2, 7, 6, 8, 6, 1, 2, 27, 28, 29, 30, 31, 32, 1, 33, 34, 35, 36, 37, 25, 38, 7, 2, 4, 39, 7, 6, 40, 30, 11, 32, 41, 42, 43, 30, 22, 2, 4, 19, 1, 44, 45, 13, 43, 46, 4
Offset: 0

Views

Author

Antti Karttunen, May 31 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A292262(i) = A292262(j).
For all i, j: a(i) = a(j) => A305432(i) = A305432(j).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291763(n) = A289814(A245612(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305298 = rgs_transform(vector(65538,n,A291763(n-1)));
    A305298(n) = v305298[1+n];

A305432 Restricted growth sequence transform of A278222(A291763(n)), constructed from runlengths of 2-digits in base-3 representation of A245612(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 5, 2, 2, 2, 6, 4, 4, 2, 7, 1, 2, 1, 3, 2, 2, 6, 8, 3, 9, 2, 4, 6, 2, 4, 3, 4, 6, 4, 8, 1, 4, 4, 4, 1, 6, 2, 3, 3, 2, 2, 2, 2, 4, 2, 4, 1, 2, 2, 9, 8, 8, 6, 6, 1, 9, 10, 6, 4, 4, 4, 11, 2, 2, 2, 8, 2, 4, 7, 8, 2, 6, 4, 6, 6, 8, 4, 2, 2, 4, 1, 6, 9, 4, 6, 12, 2, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2018

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291763(n) = A289814(A245612(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305432 = rgs_transform(vector(65538,n,A278222(A291763(n-1))));
    A305432(n) = v305432[1+n];

A291759 Binary encoding of 2-digits in ternary representation of A048673(n).

Original entry on oeis.org

0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 5, 0, 3, 4, 1, 0, 1, 0, 1, 0, 5, 2, 9, 6, 7, 8, 5, 2, 7, 4, 1, 2, 1, 0, 1, 4, 3, 2, 1, 4, 1, 6, 9, 2, 3, 0, 17, 10, 13, 4, 13, 0, 23, 4, 9, 8, 5, 0, 13, 2, 9, 8, 1, 10, 3, 0, 1, 12, 3, 0, 1, 0, 11, 2, 5, 12, 5, 2, 1, 10, 9, 4, 1, 8, 11, 14, 17, 4, 5, 0, 5, 0, 15, 0, 33, 6, 21, 16, 25, 6, 11, 8, 25, 16, 3, 8, 45, 8, 9, 4, 17, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A289814(A048673(n)).

A291760 Binary encoding of 2-digits in ternary representation of A254103(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 5, 0, 3, 0, 1, 4, 7, 2, 1, 4, 5, 0, 9, 0, 1, 4, 5, 0, 1, 2, 1, 8, 9, 2, 13, 0, 3, 6, 1, 4, 7, 0, 9, 0, 3, 4, 17, 4, 7, 8, 1, 8, 11, 2, 9, 12, 15, 2, 1, 4, 5, 6, 1, 20, 23, 2, 17, 4, 5, 6, 25, 0, 1, 10, 5, 8, 11, 0, 1, 8, 9, 12, 13, 0, 1, 2, 17, 0, 1, 4, 5, 8, 9, 0, 33, 8, 9, 12, 13, 16, 17, 0, 1, 16, 17, 2, 21, 0, 3, 6, 17
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A289814(A254103(n)).

A292260 Binary encoding of 0-digits in ternary representation of A245612(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 2, 0, 0, 3, 2, 1, 0, 16, 8, 10, 4, 1, 2, 4, 0, 12, 0, 1, 4, 6, 0, 0, 0, 41, 34, 0, 16, 33, 22, 11, 8, 2, 0, 10, 4, 21, 10, 12, 0, 5, 26, 23, 0, 4, 4, 3, 8, 5, 14, 2, 0, 5, 2, 3, 0, 146, 80, 132, 68, 43, 2, 180, 32, 0, 68, 81, 44, 12, 16, 2, 16, 33, 6, 48, 0, 9, 22, 33, 8, 54, 40, 8, 20, 11, 26, 2, 0, 126, 8, 9, 52, 0, 48, 52, 0
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A291770(A245612(n)).

A292262 Number of trailing 2-digits in ternary representation of A245612(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Cf. A007814, A007949, A245612, A291763, A292261 (even bisection subtracted by one).
Cf. also A292242, A292252.

Programs

Formula

a(n) = A007949(1+A245612(n)).
a(n) = A007814(1+A291763(n)).
a(0) = 0, a(1) = 1, after which a(2n) = 1 + A292261(n/2), a(2n+1) = 0.

A305295 Binary encoding of 1-digits in ternary representation of A245612(n).

Original entry on oeis.org

1, 0, 2, 2, 6, 7, 0, 3, 14, 4, 12, 1, 2, 0, 4, 0, 30, 37, 0, 5, 26, 28, 0, 1, 6, 17, 8, 14, 10, 9, 4, 1, 62, 16, 72, 103, 2, 90, 8, 0, 54, 25, 60, 33, 2, 32, 0, 19, 14, 40, 32, 40, 18, 11, 24, 0, 22, 18, 16, 9, 10, 8, 0, 4, 126, 333, 36, 305, 146, 4, 204, 331, 6, 147, 176, 44, 18, 225, 8, 121, 110, 214, 48, 203, 122, 6, 64, 78, 6, 1
Offset: 0

Views

Author

Antti Karttunen, May 31 2018

Keywords

Crossrefs

Cf. A245612, A289813, A305296 (rgs-transform).
Cf. also A292260, A291763.
Cf. also A304759, A304760.

Programs

Showing 1-8 of 8 results.