cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A304746 Restricted growth sequence transform of A291760(n), formed from 2-digits in ternary representation of A254103(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 2, 4, 5, 1, 3, 1, 2, 6, 7, 4, 2, 6, 5, 1, 8, 1, 2, 6, 5, 1, 2, 4, 2, 9, 8, 4, 10, 1, 3, 11, 2, 6, 7, 1, 8, 1, 3, 6, 12, 6, 7, 9, 2, 9, 13, 4, 8, 14, 15, 4, 2, 6, 5, 11, 2, 16, 17, 4, 12, 6, 5, 11, 18, 1, 2, 19, 5, 9, 13, 1, 2, 9, 8, 14, 10, 1, 2, 4, 12, 1, 2, 6, 5, 9, 8, 1, 20, 9, 8, 14, 10, 21, 12, 1, 2, 21, 12
Offset: 0

Views

Author

Antti Karttunen, May 29 2018

Keywords

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291760(n) = A289814(A254103(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v304746 = rgs_transform(vector(65537,n,A291760(n-1)));
    A304746(n) = v304746[1+n];

A305302 Restricted growth sequence transform of A278222(A291760(n)), constructed from runlengths of 2-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 3, 1, 2, 2, 5, 2, 2, 2, 4, 1, 4, 1, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 6, 1, 3, 3, 2, 2, 5, 1, 4, 1, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 4, 3, 7, 2, 2, 2, 4, 3, 2, 4, 8, 2, 4, 2, 4, 3, 6, 1, 2, 4, 4, 2, 6, 1, 2, 2, 4, 3, 6, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 1, 4, 2, 4, 3, 6, 2, 4, 1, 2, 2
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

For all i, j: A304746(i) = A304746(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289813
    A291760(n) = A289814(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305302 = rgs_transform(vector(65538,n,A278222(A291760(n-1))));
    A305302(n) = v305302[1+n];

A305303 Restricted growth sequence transform of ordered pair [A278222(A304760(n)), A278222(A291760(n))], constructed from runlengths of 1-digits and 2-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 3, 7, 2, 4, 4, 8, 9, 10, 11, 12, 7, 13, 4, 14, 3, 15, 5, 16, 5, 7, 4, 17, 2, 4, 14, 18, 4, 8, 14, 19, 20, 21, 6, 22, 22, 23, 11, 8, 24, 10, 4, 25, 22, 23, 4, 22, 7, 26, 4, 27, 21, 28, 7, 14, 4, 8, 10, 29, 16, 30, 14, 17, 4, 8, 31, 32, 9, 12, 8, 27, 12, 19, 24, 33, 14, 17, 10, 34, 2, 4, 22, 16, 11, 14, 14, 17, 3, 15, 11, 35, 14, 17, 31, 34
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

Restricted growth sequence transform of A290093(A254103(n)).
For all i, j: a(i) = a(j) => A286633(i) = A286633(j) => A286632(i) = A286632(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    A291760(n) = A289814(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux305303(n) = [A278222(A304760(n)), A278222(A291760(n))];
    v305303 = rgs_transform(vector(65538,n,Aux305303(n-1)));
    A305303(n) = v305303[1+n];

A291759 Binary encoding of 2-digits in ternary representation of A048673(n).

Original entry on oeis.org

0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 5, 0, 3, 4, 1, 0, 1, 0, 1, 0, 5, 2, 9, 6, 7, 8, 5, 2, 7, 4, 1, 2, 1, 0, 1, 4, 3, 2, 1, 4, 1, 6, 9, 2, 3, 0, 17, 10, 13, 4, 13, 0, 23, 4, 9, 8, 5, 0, 13, 2, 9, 8, 1, 10, 3, 0, 1, 12, 3, 0, 1, 0, 11, 2, 5, 12, 5, 2, 1, 10, 9, 4, 1, 8, 11, 14, 17, 4, 5, 0, 5, 0, 15, 0, 33, 6, 21, 16, 25, 6, 11, 8, 25, 16, 3, 8, 45, 8, 9, 4, 17, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A289814(A048673(n)).

A291763 Binary encoding of 2-digits in ternary representation of A245612(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 3, 0, 1, 8, 1, 6, 5, 4, 1, 2, 1, 10, 23, 16, 1, 2, 13, 10, 9, 2, 7, 0, 1, 0, 3, 2, 1, 70, 21, 24, 45, 4, 33, 52, 1, 36, 3, 20, 25, 10, 21, 0, 17, 18, 5, 0, 13, 16, 3, 12, 1, 8, 1, 4, 5, 2, 5, 0, 1, 32, 139, 74, 41, 208, 49, 0, 89, 108, 11, 130, 65, 18, 103, 4, 1, 8, 73, 4, 5, 112, 41, 16, 49, 72, 19, 38, 41, 20, 1, 8, 33, 0, 35, 86, 9, 38
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A289814(A245612(n)).

A304760 Binary encoding of 1-digits in ternary representation of A254103(n).

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 0, 0, 6, 4, 4, 1, 2, 7, 4, 5, 14, 3, 0, 4, 10, 0, 0, 6, 6, 12, 12, 2, 10, 8, 8, 5, 30, 4, 4, 9, 2, 15, 12, 0, 22, 11, 8, 9, 2, 11, 8, 1, 14, 19, 16, 1, 26, 3, 0, 8, 22, 3, 0, 12, 18, 8, 8, 1, 62, 3, 0, 20, 10, 16, 16, 9, 6, 28, 28, 1, 26, 7, 4, 13, 46, 20, 20, 2, 18, 16, 16, 13, 6, 20, 20, 10, 18
Offset: 0

Views

Author

Antti Karttunen, May 29 2018

Keywords

Crossrefs

Cf. A254103, A289813, A304740 (rgs-transform).
Cf. also A291760.

Programs

Formula

a(n) = A289813(A254103(n)).

A292240 Binary encoding of 0-digits in ternary representation of A254103(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 4, 3, 2, 1, 0, 3, 2, 1, 0, 7, 6, 0, 0, 3, 2, 4, 0, 0, 0, 1, 8, 0, 0, 6, 4, 4, 4, 2, 0, 8, 8, 6, 4, 4, 4, 5, 0, 0, 0, 1, 12, 3, 2, 0, 0, 8, 8, 9, 4, 11, 10, 0, 0, 3, 2, 4, 0, 0, 0, 2, 16, 3, 2, 1, 0, 15, 14, 0, 8, 11, 10, 1, 8, 7, 6, 5, 0, 19, 18, 1, 16, 15, 14, 13, 8, 11
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A291770(A254103(n)).

A292242 Number of trailing 2-digits in ternary representation of A254103(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Cf. A007814, A007949, A254103, A291760, A292241 (even bisection subtracted by one).
Cf. also A292252, A292262.

Programs

Formula

a(n) = A007949(1+A254103(n)).
a(n) = A007814(1+A291760(n)).
a(0) = 0, after which, a(2n) = 1 + A292241(n/2), a(2n+1) = 0.
Showing 1-8 of 8 results.