cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292252 Number of trailing 2-digits in ternary representation of A048673(n).

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Cf. A007814, A007949, A048673, A291759, A292251 (even bisection subtracted by one).
Cf. also A292242, A292262.

Programs

  • Mathematica
    If[First@ # == 2, Length@ #, 0] &@ Last@ Split@ IntegerDigits[#, 3] & /@ Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 120}] (* Michael De Vlieger, Sep 12 2017 *)
  • Scheme
    (define (A292252 n) (A007949 (+ 1 (A048673 n))))
    (define (A292252 n) (A007814 (+ 1 (A291759 n))))
    (define (A292252 n) (if (odd? n) 0 (+ 1 (A292251 (/ n 2)))))

Formula

a(n) = A007949(1+A048673(n)).
a(n) = A007814(1+A291759(n)).
a(2n) = 1 + A292251(n/2), a(2n+1) = 0.

A292241 The 3-adic valuation of A254103(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 4, 0, 0, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

One less than the even bisection of A292242.
Cf. also A292251, A292261.

Formula

a(n) = A007814(1+A292240(n)).
a(n) = A007949(A254103(n)).
For n >= 1, a(n) = A007949(3*A254103(n)) - 1.
For n >= 1, a(n) = A292242(2n)-1.

A292262 Number of trailing 2-digits in ternary representation of A245612(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Cf. A007814, A007949, A245612, A291763, A292261 (even bisection subtracted by one).
Cf. also A292242, A292252.

Programs

Formula

a(n) = A007949(1+A245612(n)).
a(n) = A007814(1+A291763(n)).
a(0) = 0, a(1) = 1, after which a(2n) = 1 + A292261(n/2), a(2n+1) = 0.

A292240 Binary encoding of 0-digits in ternary representation of A254103(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 4, 3, 2, 1, 0, 3, 2, 1, 0, 7, 6, 0, 0, 3, 2, 4, 0, 0, 0, 1, 8, 0, 0, 6, 4, 4, 4, 2, 0, 8, 8, 6, 4, 4, 4, 5, 0, 0, 0, 1, 12, 3, 2, 0, 0, 8, 8, 9, 4, 11, 10, 0, 0, 3, 2, 4, 0, 0, 0, 2, 16, 3, 2, 1, 0, 15, 14, 0, 8, 11, 10, 1, 8, 7, 6, 5, 0, 19, 18, 1, 16, 15, 14, 13, 8, 11
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2017

Keywords

Crossrefs

Formula

a(n) = A291770(A254103(n)).
Showing 1-4 of 4 results.