cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A304740 Restricted growth sequence transform of A304760(n), formed from 1-digits in ternary representation of A254103(n).

Original entry on oeis.org

1, 2, 1, 3, 3, 4, 1, 1, 5, 6, 6, 2, 3, 7, 6, 8, 9, 4, 1, 6, 10, 1, 1, 5, 5, 11, 11, 3, 10, 12, 12, 8, 13, 6, 6, 14, 3, 15, 11, 1, 16, 17, 12, 14, 3, 17, 12, 2, 9, 18, 19, 2, 20, 4, 1, 12, 16, 4, 1, 11, 21, 12, 12, 2, 22, 4, 1, 23, 10, 19, 19, 14, 5, 24, 24, 2, 20, 7, 6, 25, 26, 23, 23, 3, 21, 19, 19, 25, 5, 23, 23, 10, 21, 1, 1, 10, 13, 27, 27, 21, 28, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 29 2018

Keywords

Crossrefs

Cf. also A304746.

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v304740 = rgs_transform(vector(65538,n,A304760(n-1)));
    A304740(n) = v304740[1+n];

A305301 Restricted growth sequence transform of A278222(A304760(n)), constructed from runlengths of 1-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 2, 2, 2, 4, 2, 5, 4, 3, 1, 2, 5, 1, 1, 3, 3, 3, 3, 2, 5, 2, 2, 5, 6, 2, 2, 5, 2, 6, 3, 1, 7, 7, 2, 5, 2, 7, 2, 2, 4, 7, 2, 2, 7, 3, 1, 2, 7, 3, 1, 3, 5, 2, 2, 2, 8, 3, 1, 5, 5, 2, 2, 5, 3, 4, 4, 2, 7, 4, 2, 7, 9, 5, 5, 2, 5, 2, 2, 7, 3, 5, 5, 5, 5, 1, 1, 5, 6, 5, 5, 5, 5, 1, 1, 5, 10, 2
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

For all i, j: A304740(i) = A304740(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305301 = rgs_transform(vector(65538,n,A278222(A304760(n-1))));
    A305301(n) = v305301[1+n];

A305303 Restricted growth sequence transform of ordered pair [A278222(A304760(n)), A278222(A291760(n))], constructed from runlengths of 1-digits and 2-digits in base-3 representation of A254103(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 3, 7, 2, 4, 4, 8, 9, 10, 11, 12, 7, 13, 4, 14, 3, 15, 5, 16, 5, 7, 4, 17, 2, 4, 14, 18, 4, 8, 14, 19, 20, 21, 6, 22, 22, 23, 11, 8, 24, 10, 4, 25, 22, 23, 4, 22, 7, 26, 4, 27, 21, 28, 7, 14, 4, 8, 10, 29, 16, 30, 14, 17, 4, 8, 31, 32, 9, 12, 8, 27, 12, 19, 24, 33, 14, 17, 10, 34, 2, 4, 22, 16, 11, 14, 14, 17, 3, 15, 11, 35, 14, 17, 31, 34
Offset: 0

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

Restricted growth sequence transform of A290093(A254103(n)).
For all i, j: a(i) = a(j) => A286633(i) = A286633(j) => A286632(i) = A286632(j).

Crossrefs

Programs

  • PARI
    A254103(n) = if(!n,n,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289813
    A304760(n) = A289813(A254103(n));
    A291760(n) = A289814(A254103(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux305303(n) = [A278222(A304760(n)), A278222(A291760(n))];
    v305303 = rgs_transform(vector(65538,n,Aux305303(n-1)));
    A305303(n) = v305303[1+n];

A304759 Binary encoding of 1-digits in ternary representation of A048673(n).

Original entry on oeis.org

1, 0, 2, 2, 3, 0, 0, 6, 7, 4, 1, 2, 4, 4, 0, 14, 5, 12, 6, 10, 9, 0, 4, 6, 1, 0, 4, 10, 5, 8, 1, 30, 8, 8, 14, 26, 2, 8, 13, 22, 3, 16, 0, 2, 17, 12, 8, 14, 1, 0, 10, 2, 10, 0, 9, 22, 3, 8, 11, 18, 9, 0, 18, 62, 0, 20, 12, 18, 1, 24, 13, 54, 15, 0, 28, 18, 0, 24, 12, 46, 37, 4, 8, 34, 7, 4, 0, 6, 11, 32, 23, 26, 22, 0
Offset: 1

Views

Author

Antti Karttunen, May 30 2018

Keywords

Comments

Compare the logarithmic scatterplot to those of A291759, A292250 and A304760.

Crossrefs

Cf. A048673, A289813, A304758 (rgs-transform), A340381.
Cf. A340376 (positions of zeros), A340378 (binary weight).

Programs

Formula

a(n) = A289813(A048673(n)).

A305295 Binary encoding of 1-digits in ternary representation of A245612(n).

Original entry on oeis.org

1, 0, 2, 2, 6, 7, 0, 3, 14, 4, 12, 1, 2, 0, 4, 0, 30, 37, 0, 5, 26, 28, 0, 1, 6, 17, 8, 14, 10, 9, 4, 1, 62, 16, 72, 103, 2, 90, 8, 0, 54, 25, 60, 33, 2, 32, 0, 19, 14, 40, 32, 40, 18, 11, 24, 0, 22, 18, 16, 9, 10, 8, 0, 4, 126, 333, 36, 305, 146, 4, 204, 331, 6, 147, 176, 44, 18, 225, 8, 121, 110, 214, 48, 203, 122, 6, 64, 78, 6, 1
Offset: 0

Views

Author

Antti Karttunen, May 31 2018

Keywords

Crossrefs

Cf. A245612, A289813, A305296 (rgs-transform).
Cf. also A292260, A291763.
Cf. also A304759, A304760.

Programs

Showing 1-5 of 5 results.