A291755 Compound filter (multiplicative order of 2 mod 2n+1 & eulerphi(2n+1)): a(n) = P(A002326(n), A037225(n)), where P(n,k) is sequence A000027 used as a pairing function.
1, 5, 25, 31, 61, 181, 265, 59, 261, 613, 142, 507, 761, 613, 1513, 566, 416, 607, 2521, 607, 1731, 1499, 607, 2301, 1912, 749, 5305, 1731, 1396, 6613, 7081, 826, 1723, 8581, 2102, 5391, 3169, 1731, 3946, 6709, 5725, 13285, 2493, 3431, 4764, 3415, 2356, 5707, 10201, 3946, 19801, 11527
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
A002326[n_] := MultiplicativeOrder[2, 2n+1]; a[n_] := (1/2)*(2 + ((A002326[n] + EulerPhi[2n+1])^2) - A002326[n] - 3* EulerPhi[2n+1]); Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 23 2024 *)
-
PARI
A002326(n) = if(n<0, 0, znorder(Mod(2, 2*n+1))); \\ This function from Michael Somos, Mar 31 2005 A291755(n) = (1/2)*(2 + ((A002326(n)+eulerphi(n+n+1))^2) - A002326(n) - 3*eulerphi(n+n+1));
-
Scheme
(define (A291755 n) (* 1/2 (+ (expt (+ (A002326 n) (A000010 (+ 1 n n))) 2) (- (A002326 n)) (- (* 3 (A000010 (+ 1 n n)))) 2)))
Comments