A291839 a(n) is the minimal position at which the maximal value of row n appears in row n of triangle A100960.
3, 5, 7, 9, 11, 14, 16, 18, 21, 23, 25, 27, 30, 32, 34, 37, 39, 41, 43, 46, 48, 50, 52, 55, 57, 59, 61, 64, 66, 68, 71, 73, 75, 77, 80, 82, 84, 86, 89, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 114, 116, 118, 120, 123, 125, 127, 129, 132
Offset: 3
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 3..126
- E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin., 9 (2002), #R43.
Programs
-
PARI
Q(n,k) = { \\ c-nets with n-edges, k-vertices if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); }; A100960_ser(N) = { my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)), q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))), d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1), g2=intformal(t^2/2*((1+d)/(1+x)-1))); serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x); }; A291839_seq(N) = { my(g2=apply(Vecrev, Vec(A100960_ser(N+2))), m=apply(vecmax, g2)); apply(v->vecmin(v)-1, vector(#g2, k, select(v->v==m[k], g2[k], 1))); }; A291839_seq(22)