cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291839 a(n) is the minimal position at which the maximal value of row n appears in row n of triangle A100960.

Original entry on oeis.org

3, 5, 7, 9, 11, 14, 16, 18, 21, 23, 25, 27, 30, 32, 34, 37, 39, 41, 43, 46, 48, 50, 52, 55, 57, 59, 61, 64, 66, 68, 71, 73, 75, 77, 80, 82, 84, 86, 89, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 114, 116, 118, 120, 123, 125, 127, 129, 132
Offset: 3

Views

Author

Gheorghe Coserea, Sep 05 2017

Keywords

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A291839_seq(N) = {
      my(g2=apply(Vecrev, Vec(A100960_ser(N+2))), m=apply(vecmax, g2));
      apply(v->vecmin(v)-1, vector(#g2, k, select(v->v==m[k], g2[k], 1)));
    };
    A291839_seq(22)

Formula

a(n) ~ c*n + o(sqrt(n)), where c=2.26287583256262... (A291840).
T(n, a(n)) = max {T(n,k), n <= k <= 3*(n-2) }, where T(n,k) is defined by A100960.