cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291841 a(n) is the number of labeled 2-connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 18, 131, 1180, 12570, 154525, 2150748, 33399546, 571979428, 10699844995, 216921707622, 4734437392728, 110613829184421, 2752971531611715, 72676980383698345, 2027560176161932735, 59579981648921326791, 1838669555339295257097, 59435431024069408426431
Offset: 3

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A100960.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)), e2=apply(serlaplace, g2));
       Vec(subst(e2, 't, 1));
    };
    seq(22)