cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291842 a(n) is the number of labeled connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525770, 3384987698, 91976075664, 2751117418712, 89832957177685, 3179833729806525, 121286809954760876, 4959277317653328656, 216402696660205555698, 10037527922988058277877, 493159461152794975438450, 25585023231409205439510792
Offset: 1

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A288265.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)),
       b=t*'x^2/2 + 'x*Ser(vector(N+1, n, subst(polcoeff(g2, n, 't),'x,'t))),
       g1=intformal(serreverse('x/exp(b'))/'x),
       e1='x*Ser(vector(N, n, subst(polcoeff(serlaplace(g1), n, 't), 'x, 't))));
       Vec(subst(e1,'t,1));
    };
    seq(20)