cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291846 Central terms in irregular triangle A291845.

Original entry on oeis.org

1, 1, 5, 33, 283, 2995, 37723, 551047, 9157923, 170606547, 3521075919, 79741123539, 1965955092517, 52414187219485, 1502559229282213, 46087421890091145, 1506033038595292467, 52232959640093489043, 1916263566511685329711, 74142047814365044902307, 3017192203838382727894241, 128829022389463544587355721, 5758871157244067281788041809
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

G.f. of row n in triangle A291845 equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2), with row sums equal to the odd double factorials A001147.

Crossrefs

Programs

  • PARI
    /* As Central Terms of Triangle A291845 */
    {A291845(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
    {for(n=0,25,print1(A291845(n,n),", "))}

Formula

a(n) = A291845(n,n).

A291847 A diagonal of irregular triangle A291845.

Original entry on oeis.org

1, 4, 26, 224, 2389, 30324, 446109, 7460928, 139775763, 2899264620, 65954625560, 1632654953280, 43688087178059, 1256602120453484, 38661480001233486, 1266934683224418816, 44054989554206606603, 1620147926716343851500, 62826169539072988352134, 2562071016044926371845920, 109611597248567432265872903, 4908887251696851858305862332
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

G.f. of row n in triangle A291845 equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2), with row sums equal to the odd double factorials A001147.

Crossrefs

Programs

  • PARI
    /* As a Diagonal in Triangle A291845 */
    {A291845(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
    {for(n=0,25,print1(A291845(n+1,n),", "))}

Formula

a(n) = A291845(n+1,n).

A291848 G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + (2*k+1)*x + x^2).

Original entry on oeis.org

1, 1, 2, 6, 15, 47, 150, 522, 1903, 7319, 29396, 122988, 534141, 2400061, 11136516, 53220492, 261576725, 1319629445, 6825232486, 36137198722, 195664517227, 1082169511883, 6108213101658, 35153836421302, 206126910439763, 1230477025952427, 7473067121404104, 46146114390128888, 289554642297817561, 1845220293901278041, 11936266843924805064
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

Antidiagonal sums of irregular triangle A291845, which has row sums equal to the odd double factorials A001147.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 47*x^5 + 150*x^6 + 522*x^7 + 1903*x^8 + 7319*x^9 + 29396*x^10 + 122988*x^11 + 534141*x^12 +...
which equals the series:
A(x) = 1 + x*(1+x+x^2) + x^2*(1+x+x^2)*(1+3*x+x^2) + x^3*(1+x+x^2)*(1+3*x+x^2)*(1+5*x+x^2) + x^4*(1+x+x^2)*(1+3*x+x^2)*(1+5*x+x^2)*(1+7*x+x^2) +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[2^n*x^(2*n)*Pochhammer[(1 + x + x^2)/(2*x), n], {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 13 2017 *)
  • PARI
    {a(n)=sum(k=0, n, polcoeff(prod(j=0, n-k-1, 1+(2*j+1)*x+x^2), k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m*prod(j=0, m-1, 1+(2*j+1)*x+x^2))+x*O(x^n), n)}
    for(n=0,25,print1(a(n),", "))
Showing 1-3 of 3 results.