cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291845 Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2) for n>0 with a single '1' in row 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 5, 4, 1, 1, 9, 26, 33, 26, 9, 1, 1, 16, 90, 224, 283, 224, 90, 16, 1, 1, 25, 235, 1050, 2389, 2995, 2389, 1050, 235, 25, 1, 1, 36, 511, 3660, 14174, 30324, 37723, 30324, 14174, 3660, 511, 36, 1, 1, 49, 980, 10339, 62265, 218246, 446109, 551047, 446109, 218246, 62265, 10339, 980, 49, 1, 1, 64, 1716, 25088, 218330, 1162560, 3782064, 7460928, 9157923, 7460928, 3782064, 1162560, 218330, 25088, 1716, 64, 1, 1, 81, 2805, 54324, 646542, 4899258, 23763914, 72918576, 139775763, 170606547, 139775763, 72918576, 23763914, 4899258, 646542, 54324, 2805, 81, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

Row sums yield the odd double factorials A001147.
Central terms in rows form A291846.
Another diagonal forms A291847.
Antidiagonal sums yield A291848.

Examples

			This irregular triangle begins:
1;
1, 1, 1;
1, 4, 5, 4, 1;
1, 9, 26, 33, 26, 9, 1;
1, 16, 90, 224, 283, 224, 90, 16, 1;
1, 25, 235, 1050, 2389, 2995, 2389, 1050, 235, 25, 1;
1, 36, 511, 3660, 14174, 30324, 37723, 30324, 14174, 3660, 511, 36, 1;
1, 49, 980, 10339, 62265, 218246, 446109, 551047, 446109, 218246, 62265, 10339, 980, 49, 1;
1, 64, 1716, 25088, 218330, 1162560, 3782064, 7460928, 9157923, 7460928, 3782064, 1162560, 218330, 25088, 1716, 64, 1;
1, 81, 2805, 54324, 646542, 4899258, 23763914, 72918576, 139775763, 170606547, 139775763, 72918576, 23763914, 4899258, 646542, 54324, 2805, 81, 1;
1, 100, 4345, 107700, 1681503, 17237880, 117496358, 529332200, 1548992621, 2899264620, 3521075919, 2899264620, 1548992621, 529332200, 117496358, 17237880, 1681503, 107700, 4345, 100, 1; ...
		

Crossrefs

Cf. A291846, A291847, A291848, A201949, A001147 (row sums).

Programs

  • PARI
    {T(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
    {for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))}

A291847 A diagonal of irregular triangle A291845.

Original entry on oeis.org

1, 4, 26, 224, 2389, 30324, 446109, 7460928, 139775763, 2899264620, 65954625560, 1632654953280, 43688087178059, 1256602120453484, 38661480001233486, 1266934683224418816, 44054989554206606603, 1620147926716343851500, 62826169539072988352134, 2562071016044926371845920, 109611597248567432265872903, 4908887251696851858305862332
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

G.f. of row n in triangle A291845 equals Product_{k=0..n-1} (1 + (2*k+1)*x + x^2), with row sums equal to the odd double factorials A001147.

Crossrefs

Programs

  • PARI
    /* As a Diagonal in Triangle A291845 */
    {A291845(n, k)=polcoeff(prod(j=0, n-1, 1 + (2*j+1)*x + x^2), k)}
    {for(n=0,25,print1(A291845(n+1,n),", "))}

Formula

a(n) = A291845(n+1,n).
Showing 1-2 of 2 results.