A377142 Numbers m such that phi(2*m-1)/2 = phi(2*m) - 1, where phi = A000010.
2, 4, 5, 16, 64, 4096, 65536, 262144
Offset: 1
Examples
2 is a term because phi(2*2-1)/2 = phi(3)/2 = 2/2 = 1 is equal to phi(2*2)-1 = phi(4)-1 = 2-1 = 1; 5 is a term because phi(2*5-1)/2 = phi(9)/2 = 6/2 = 3 is equal to phi(2*5)-1 = phi(10)-1 = 4-1 = 3.
Crossrefs
Programs
-
Magma
[m: m in [2..2*10^6] | EulerPhi(2*m-1)/2 eq EulerPhi(2*m)-1];
-
Maple
filter:= m -> numtheory:-phi(2*m-1)/2 = numtheory:-phi(2*m)-1: select(filter, [$1..10^7]); # Robert Israel, Oct 20 2024
-
Mathematica
Select[Range[300000], EulerPhi[2*# - 1]/2 == EulerPhi[2*#] - 1 &] (* Amiram Eldar, Oct 30 2024 *)
-
PARI
isok(m) = eulerphi(2*m-1)/2 == eulerphi(2*m) - 1; \\ Michel Marcus, Oct 30 2024
Formula
a(n) = (A376337(n) + 1)/2.
Comments