A291904 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k+1) with T(0,0) = 1 for 0 <= k <= A003056(n).
1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 3, 2, 0, 0, 3, 2, 1, 1, 1, 0, 2, 3, 2, 1, 0, 0, 3, 4, 3, 1, 0, 0, 4, 4, 3, 2, 1, 0, 4, 6, 4, 2, 0, 0, 6, 7
Offset: 0
Examples
First few rows are: 1; 0, 1; 0, 0; 0, 0, 1; 0, 1, 0; 0, 0, 0; 0, 0, 1, 1; 0, 1, 0, 0; 0, 0, 1, 0; 0, 1, 1, 1; 0, 1, 0, 0, 1; 0, 0, 2, 1, 0; 0, 2, 1, 1, 0.
Links
- Seiichi Manyama, Rows n = 0..481, flattened
Crossrefs
Programs
-
Mathematica
T[0, 0] = 1; T[, 0] = 0; T[n?Positive, k_] /; 0 < k <= Floor[(Sqrt[8n+1] - 1)/2] := T[n, k] = T[n-k, k-1] + T[n-k, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 20}, {k, 0, Floor[(Sqrt[8n+1] - 1)/2]}] // Flatten (* Jean-François Alcover, May 29 2019 *)
Formula
From John Tyler Rascoe, Aug 14 2023: (Start)
This triangle is T_1(n,k) of the general triangle T_m(n,k) for compositions of this kind with first part m.
T_m(0,0) = T_m(m,m) = 1.
T_m(n,k) = 0 for 0 < n < m or n < k.
T_m(n,0) = 0 for 0 < n. (End)
Comments