A291976 a(n) = (4*n)! * [z^(4*n)] exp(1 - (cos(z) + cosh(z))/2).
1, -1, 34, -5281, 2185429, -1854147586, 2755045819549, -6440372006517541, 21861211462545555394, -100916681831006840635021, 596756926975162013357972089, -4237398636260867429185819175026, 32919774165127854788267224335178009
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..155
Crossrefs
Cf. A291452.
Programs
-
Maple
A291976 := proc(n) exp(1 - (cos(z) + cosh(z))/2): (4*n)!*coeff(series(%, z, 4*(n+1)), z, 4*n) end: seq(A291976(n), n=0..12); # second Maple program: b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add( b(n-4*j, 1-t)*binomial(n-1, 4*j-1), j=1..n/4)) end: a:= n-> b(4*n, 0): seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Mathematica
b[n_, t_] := b[n, t] = If[n == 0, 1-2t, Sum[b[n-4j, 1-t] * Binomial[n-1, 4j-1], {j, 1, n/4}]]; a[n_] := b[4n, 0]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 27 2023, after Alois P. Heinz *)
Comments