A292030 Table read by ascending antidiagonals: T(n,k) = A000045(k+1)*n + A000045(k).
0, 1, 1, 2, 2, 1, 3, 3, 3, 2, 4, 4, 5, 5, 3, 5, 5, 7, 8, 8, 5, 6, 6, 9, 11, 13, 13, 8, 7, 7, 11, 14, 18, 21, 21, 13, 8, 8, 13, 17, 23, 29, 34, 34, 21, 9, 9, 15, 20, 28, 37, 47, 55, 55, 34, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89, 55, 11, 11, 19, 26, 38, 53, 73, 97, 123, 144, 144, 89
Offset: 0
Examples
T(4,2) = 9 because 9 is element 2 in the Fibonacci-like sequence starting with 4 and 5. The array begins: 0, 1, 1, 2, 3, 5, 8, ... 1, 2, 3, 5, 8, 13, 21, ... 2, 3, 5, 8, 13, 21, 34, ... 3, 4, 7, 11, 18, 29, 47, ... 4, 5, 9, 14, 23, 37, 60, ... 5, 6, 11, 17, 28, 45, 73, ... 6, 7, 13, 20, 33, 53, 86, ...
Links
- Ely Golden, Table of n, a(n) for n = 0..10000(contains 140 antidiagonals, flattened).
- Ely Golden, List of ordered pairs (j,k) such that T(j,k)=n for n = 0..10000
Programs
-
Mathematica
T[n_,k_]:=SeriesCoefficient[(x+y-x*y)/((1-x)^2(1-y-y^2)),{x,0,n},{y,0,k}]; Table[T[n-k,k],{n,0,11},{k,0,n}]//Flatten (* Stefano Spezia, May 21 2025 *)
-
PARI
T(n, k) = fibonacci(k+1)*n + fibonacci(k); tabl(nn) = matrix(nn+1,nn+1, i,j, T(i-1,j-1)); \\ Michel Marcus, Sep 27 2017
-
Python
def nextAntidiagonal(d): if(d[0]==0): return [d[1]+1,0] return [d[0]-1,d[1]+1] def fibonacciM(m,n): f0,f1=0,1 if(n<0): for _ in range(-n): f1,f0=f0,f1-f0 else: for _ in range(n): f0,f1=f1,f0+f1 return f1*m+f0 d=[0,0] for i in range(10001): print(str(i)+" "+str(fibonacciM(d[0],d[1]))) d=nextAntidiagonal(d)
Formula
G.f.: (x + y - x*y)/((1 - x)^2*(1 - y - y^2)). - Stefano Spezia, May 21 2025
Comments