cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j^k*x^j).

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 2, -1, 1, -1, -15, -20, 6, -1, 1, 1, -1, -31, -66, 20, 5, 4, -1, 1, -1, -63, -212, 66, 71, 40, -1, 2, 1, -1, -127, -666, 212, 605, 442, 11, 18, -2, 1, -1, -255, -2060, 666, 4439, 4660, 215, 226, -22, 2
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2017

Keywords

Examples

			Square array begins:
    1,  1,  1,   1,   1, ...
   -1, -1, -1,  -1,  -1, ...
    0, -1, -3,  -7, -15, ...
   -1, -2, -6, -20, -66, ...
    1,  2,  6,  20,  66, ...
		

Crossrefs

Columns k=0..2 give A081362, A022693, A292165.
Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000225.
Main diagonal gives A292072.

Programs

  • Maple
    b:= proc(n, i, k) option remember; (m->
          `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2)
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(b(n-i$2, k)*A(i, k), i=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 12 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[# < n, 0, If[n == #, i!^k, b[n, i-1, k] + If[i > n, 0, i^k b[n-i, i-1, k]]]]&[i(i+1)/2];
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[b[n-i, n-i, k] A[i, k], {i, 0, n-1}]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Nov 20 2019, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import factorial as f
    @cacheit
    def b(n, i, k):
        m=i*(i + 1)/2
        return 0 if mn else i**k*b(n - i, i - 1, k))
    @cacheit
    def A(n, k): return 1 if n==0 else -sum([b(n - i, n - i, k)*A(i, k) for i in range(n)])
    for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Sep 14 2017, after Maple program
Showing 1-1 of 1 results.