A292079 Composite numbers m such that 2^m - 1 has a single prime factor of the form k*m + 1.
4, 6, 8, 9, 12, 20, 24, 27, 33, 49, 69, 77, 145, 425, 447, 567
Offset: 1
Programs
-
Mathematica
Select[Range@ 150, And[CompositeQ@ #, Function[{m, p}, Total@ Boole@ Map[Divisible[# - 1, m] &, p] == 1] @@ {#, FactorInteger[2^# - 1][[All, 1]]}] &] (* Michael De Vlieger, Dec 06 2017 *)
-
PARI
lista(nn) = forcomposite(n=1, nn, my(f = factor(2^n-1)); if (sum(k=1, #f~, ((f[k, 1]-1) % n)==0) == 1, print1(n, ", ")));
Extensions
Erroneous terms 841 and 1127 and possible (but unconfirmed, and not necessarily next) term 1037 deleted by Jon E. Schoenfield, Dec 03 2017
Comments