cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292080 Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
Offset: 0

Views

Author

Andrew Howroyd, Sep 12 2017

Keywords

Comments

For odd n, there are no symmetrical configurations of non-attacking rooks without a rook in the main diagonal, so a(2n+1) = A003471(2n+1) / 8. For even n, configurations with rotational and diagonal symmetry are possible.

Examples

			Case n=4: The 2 nonequivalent solutions are:
   _ x _ _     _ x _ _
   x _ _ _     _ _ _ x
   _ _ _ x     x _ _ _
   _ _ x _     _ _ x _
Case n=5: The 2 nonequivalent solutions are:
   _ x _ _ _   _ x _ _ _
   x _ _ _ _   _ _ _ _ x
   _ _ _ x _   x _ _ _ _
   _ _ _ _ x   _ _ x _ _
   _ _ x _ _   _ _ _ x _
		

Crossrefs

Programs

  • Mathematica
    sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}];
    F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]);
    d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}];
    R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!];
    a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n).
    sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
    F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]}
    D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
    R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)}
    a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}

Formula

a(2n+1) = A003471(2n+1) / 8, a(2n) = (A003471(2n) + 2^n * A000166(n) + 2*A037224(2*n) + 2*A053871(n)) / 8.