A292080 Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.
1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
Offset: 0
Keywords
Examples
Case n=4: The 2 nonequivalent solutions are: _ x _ _ _ x _ _ x _ _ _ _ _ _ x _ _ _ x x _ _ _ _ _ x _ _ _ x _ Case n=5: The 2 nonequivalent solutions are: _ x _ _ _ _ x _ _ _ x _ _ _ _ _ _ _ _ x _ _ _ x _ x _ _ _ _ _ _ _ _ x _ _ x _ _ _ _ x _ _ _ _ _ x _
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Andrew Howroyd, Nonequivalent and Symmetric Solutions
Programs
-
Mathematica
sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}]; F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]); d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}]; R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!]; a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
-
PARI
\\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n). sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)} F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]} D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))} R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)} a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}
Comments