cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292087 Limit of the number of (unlabeled) rooted trees without unary nodes where n is the difference between the number of leafs and the maximal outdegree as the tree size increases.

Original entry on oeis.org

1, 2, 7, 23, 78, 262, 893, 3040, 10411, 35724, 122950, 424004, 1465254, 5071981, 17584226, 61046464, 212197118, 738422362, 2572261241, 8968726829, 31298189180, 109307655964, 382031357974, 1336107044159, 4675807680776, 16372936282017, 57363325974309
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2017

Keywords

Examples

			: a(0) = 1:
:                  o
:               //( )\\
:             N N N N N N
:
: a(1) = 2:
:             o               o
:           /   \          / /|\ \
:          o     N        o N N N N
:       / /|\ \          ( )
:      N N N N N         N N
:
: a(2) = 7:
:           o             o            o             o
:          / \          /   \        /( )\         / | \
:         o   N        o     N      o N N N       o  N  N
:        / \         /( )\         / \          /( )\
:       o   N       o N N N       o   N        N N N N
:     /( )\        ( )           ( )
:    N N N N       N N           N N
:
:          o            o              o
:        /   \        /( )\         / ( \ \
:       o     o      o N N N      o   o  N N
:     /( )\  ( )    /|\          ( ) ( )
:    N N N N N N   N N N         N N N N
:
		

Crossrefs

Limit of reversed rows of A292086.

Programs

  • Maple
    b:= proc(n, i, v, k) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n A(2*n+3, n+3)-A(2*n+3, n+2):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0,
        If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0,
        If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*
        b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n < 2, n,
        Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
    a[n_] := A[2*n + 3, n + 3] - A[2*n + 3, n + 2];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 28 2024, after Alois P. Heinz *)