cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292178 Decimal expansion of: Sum_{n>=1} -1 / (n * (1/2 - 2^n)^n).

Original entry on oeis.org

6, 2, 6, 6, 3, 6, 1, 3, 8, 7, 8, 9, 4, 3, 6, 3, 3, 9, 7, 1, 9, 2, 2, 4, 1, 1, 7, 2, 8, 0, 9, 6, 2, 6, 5, 9, 2, 4, 4, 0, 8, 3, 3, 3, 8, 4, 3, 4, 3, 3, 6, 9, 0, 0, 2, 6, 3, 1, 3, 2, 9, 0, 6, 2, 4, 9, 2, 3, 0, 1, 1, 1, 6, 8, 1, 4, 8, 8, 7, 4, 8, 3, 9, 5, 1, 4, 3, 9, 6, 9, 5, 4, 5, 8, 9, 7, 7, 2, 3, 8, 0, 9, 0, 9, 9, 7, 7, 7, 3, 6, 8, 4, 8, 2, 9, 5, 1, 0, 8, 4, 7, 1, 7, 2, 5, 0, 4, 4, 9, 4, 3, 7, 7, 4, 3, 5, 3, 4, 8, 8, 3, 9, 5, 5, 5, 7, 3, 6, 7, 4
Offset: 0

Views

Author

Paul D. Hanna, Oct 05 2017

Keywords

Comments

This constant plus A292179 equals log(2), due to the identity (at x = 1/2):
Sum_{n=-oo..+oo, n<>0} (x - x^n)^n / n = -log(1-x).
More generally, it appears that Sum_{n = -oo..+oo, n <> 0} (x - a^n)^n / n = -log(1 - x) for |x| < 1 and |a| < 1. - Peter Bala, Nov 03 2024

Examples

			Constant t = 0.62663613878943633971922411728096265924408333843433690026313290...
where t = 2/(1*3) - 4/(2*7^2) + 8/(3*15^3) - 16/(4*31^4) + 32/(5*63^5) - 64/(6*127^6) + 128/(7*255^7) - 256/(8*511^8) + 512/(9*1023^9) - 1024/(10*2047^10) + 2048/(11*4095^11) - 4096/(12*8191^12) + 8192/(13*16383^13) - 16384/(14*32767^14) + 32768/(15*65535^15) +...
Also,
log(2) - t = 0/(1*2) + 1^2/(2*2^4) + 3^3/(3*2^9) + 7^4/(4*2^16) + 15^5/(5*2^25) + 31^6/(6*2^36) + 63^7/(7*2^49) + 127^8/(8*2^64) + 255^9/(9*2^81) + 511^10/(10*2^100) + 1023^11/(11*2^121) + 2047^12/(12*2^144) + 4095^13/(13*2^169) + 8191^14/(14*2^196) + 16383^15/(15*2^225) +... (constant A292179)
		

Crossrefs

Cf. A292179.

Formula

Constant: Sum_{n>=1} -(-1)^n * 2^n / (n * (2^(n+1) - 1)^n).
Constant: log(2) - Sum_{n>=1} (2^(n-1) - 1)^n / (n * 2^(n^2)).