A292222 Triangle corresponding to the partition array of the M_1 multinomials (A036038).
1, 1, 2, 1, 3, 6, 1, 10, 12, 24, 1, 15, 50, 60, 120, 1, 41, 180, 300, 360, 720, 1, 63, 497, 1260, 2100, 2520, 5040, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880, 1, 637, 13680, 95640, 322560, 584640, 907200, 1512000, 1814400, 3628800
Offset: 1
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 1 2 3: 1 3 6 4: 1 10 12 24 5: 1 15 50 60 120 6: 1 41 180 300 360 720 7: 1 63 497 1260 2100 2520 5040 8: 1 162 1484 6496 10080 16800 20160 40320 9: 1 255 5154 20916 58464 90720 151200 181440 362880 10: 1 637 13680 95640 322560 584640 907200 1512000 1814400 3628800 ... T(5, 3) =50 because the partitions are [1^2, 3^1] and [1^1, 2^2] with M_1 numbers 20 = A036038(5, 4) and 30 = A036038(5, 5), respectively, adding to 50.
Links
- Milton Abramowitz and Irene A. Stegun, editors, Multinomials: M_1, M_2 and M_3, Handbook of Mathematical Functions, December 1972, pp. 831-2.
Crossrefs
Programs
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 29 2017, after Alois P. Heinz *)
Formula
T(n, m) = sum over the A036038 entries in row n with parts number m, for m >= n >= 1.
Comments