A292227 Numerators of partial sums of the series 1 + 2*Sum_{k >= 1} 1/(4*k^4 + 1).
1, 7, 93, 467, 19173, 1170203, 19898781, 2248887383, 65223261317, 11806034873107, 694496744821, 625756401440091, 195865032043506253, 14298321093992118279, 6019647565828140441989, 222728486906331381429243, 24277533643722234159157217, 14882189966220076173164214151
Offset: 0
Examples
The rationals s(n) begin: 1, 7/5, 93/65, 467/325, 19173/13325, 1170203/812825, 19898781/13818025, 2248887383/1561436825,... s(10^5) = 1.4406595199775144260 (Maple 20 digits), to be compared with 1.4406595199775145926 (20 digits from A228048).
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, p. 189.
Links
- Robert Israel, Table of n, a(n) for n = 0..340
Programs
-
Maple
seq(numer(t),t=ListTools:-PartialSums([1, seq(2/(4*k^4+1),k=1..30)]));
-
Mathematica
{1}~Join~Numerator[1 + 2 Accumulate[Array[1/(4 #^4 + 1) &, 17]]] (* Michael De Vlieger, Oct 30 2017 *)
-
PARI
a(n) = numerator(1+2*sum(k=1, n, 1/(4*k^4 + 1))); \\ Michel Marcus, Oct 30 2017
Formula
a(n) = numerators(s(n)) with the rationals (in lowest terms) s(n) = 1 + 2*Sum_{k=1..n} 1/(4*k^4 + 1), n >= 0.
Comments