cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292243 a(1) = 1; for n > 1, a(n) = 3*a(A253889(n)) + (n mod 3).

Original entry on oeis.org

1, 5, 3, 16, 17, 9, 49, 11, 33, 160, 50, 156, 52, 53, 147, 88, 29, 27, 82, 149, 474, 457, 35, 453, 106, 101, 441, 151, 482, 303, 265, 152, 483, 250, 470, 1449, 1441, 158, 480, 1429, 161, 1407, 469, 443, 1371, 298, 266, 318, 1348, 89, 969, 961, 83, 954, 910, 248, 897, 268, 449, 1455, 322, 1424, 99, 808, 1373, 738, 1366, 107
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Comments

a(n) encodes in its base-3 representation the succession of modulo 3 residues obtained when map x -> A253889(x), starting from x=n, is iterated down to the eventual 1.

Crossrefs

Programs

  • Mathematica
    f[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; g[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; a[1] = 1; a[n_] := a[n] = 3 a[Floor@ g[Floor[f[n]/2]]] + Mod[n, 3]; Array[a, 68] (* Michael De Vlieger, Sep 16 2017 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    A253889(n) = if(1==n,n,A048673(A064216(n)\2));
    A292243(n) = if(1==n,n,((n%3) + 3*A292243(A253889(n))));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A292243 n) (if (= 1 n) n (+ (modulo n 3) (* 3 (A292243 (A253889 n))))))

Formula

a(1) = 1; for n > 1, a(n) = 3*a(A253889(n)) + A010872(n).