A292249 Compound filter (multiplicative order of 2 mod 2n+1 & prime signature of 2n+1): a(n) = P(A002326(n), A046523(2n+1)), where P(n,k) is sequence A000027 used as a pairing function.
1, 5, 14, 9, 42, 65, 90, 40, 44, 189, 61, 77, 273, 318, 434, 20, 115, 148, 702, 148, 230, 119, 265, 299, 297, 86, 1430, 320, 271, 1769, 1890, 142, 148, 2277, 373, 665, 54, 485, 625, 819, 2400, 3485, 86, 556, 77, 148, 115, 856, 1224, 850, 5150, 1377, 832, 5777, 702, 856, 434, 1220, 265, 430, 6438, 320, 5771, 35, 185, 8645, 271
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
A002326(n) = if(n<0, 0, znorder(Mod(2, 2*n+1))); \\ This function from Michael Somos, Mar 31 2005 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A292249(n) = (1/2)*(2 + ((A002326(n)+A046523(n+n+1))^2) - A002326(n) - 3*A046523(n+n+1));
-
Scheme
(define (A292249 n) (* 1/2 (+ (expt (+ (A002326 n) (A046523 (+ 1 n n))) 2) (- (A002326 n)) (- (* 3 (A046523 (+ 1 n n)))) 2)))