cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292257 a(n) is the total number of 1's in binary expansion of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 3, 4, 1, 7, 1, 5, 5, 4, 1, 8, 1, 7, 6, 5, 1, 10, 3, 5, 5, 9, 1, 14, 1, 5, 6, 4, 6, 13, 1, 5, 6, 10, 1, 15, 1, 9, 11, 6, 1, 13, 4, 9, 5, 9, 1, 14, 6, 13, 6, 6, 1, 23, 1, 7, 11, 6, 6, 14, 1, 7, 7, 15, 1, 18, 1, 5, 12, 9, 7, 16, 1, 13, 9, 5, 1, 24, 5, 6, 7, 13, 1, 26, 7, 11, 8, 7, 6, 16, 1, 11, 10, 15, 1, 14, 1, 13, 18
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2017

Keywords

Comments

If a(n) == A000120(n), then n is in A175522, if a(n) < A000120(n), then n is in A175524, and if a(n) > A000120(n), then n is in A175526.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DigitCount[#, 2, 1] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
    Table[Total[Flatten[IntegerDigits[#,2]&/@Most[Divisors[n]]]],{n,120}] (* Harvey P. Dale, Oct 11 2024 *)
  • PARI
    A292257(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA000120(d).
a(n) = A093653(n) - A000120(n).
a(n) = A192895(n) + A000120(n).
a(n) = A001222(A293214(n)).
A000035(a(n)) = A000035(A290090(n)). [Parity-wise equivalent with A290090.]