cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292265 A multiplicative encoding (compressed) for the exponents of 2 obtained when using Shevelev's algorithm for computing A002326.

Original entry on oeis.org

2, 3, 12, 6, 20, 180, 720, 5, 80, 25920, 20, 360, 43200, 25920, 6220800, 10, 240, 540, 671846400, 540, 57600, 2160, 540, 194400, 155520, 45, 5804752896000, 77760, 14400, 87071293440000, 348285173760000, 15, 960, 12538266255360000, 311040, 139968000, 120, 77760, 18662400, 1679616000, 23219011584000, 108330620446310400000, 60, 4665600, 360, 540, 180
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2017

Keywords

Comments

a(n) = A019565(v(1)) * A019565(v(2)) * ... * A019565(v(k)), where v(1) .. v(k) are 2-adic valuations (not all necessarily distinct) of the iterated values obtained when running Shevelev's algorithm for computing A002623. (See A179680 and A292239.)

Crossrefs

Cf. A000265, A002326, A007814, A019565, A179680, A292239 (a variant), A292266 (rgs-version of this filter).

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m,2)); m = A000265(x+m)); z; };
    
  • Scheme
    (define (A292265 n) (let ((x (+ n n 1))) (let loop ((z (A019565 (A007814 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (* z (A019565 (A007814 (+ x m)))) m))))))

Formula

For all n >= 0, A048675(a(n)) = A002326(n).