A292265 A multiplicative encoding (compressed) for the exponents of 2 obtained when using Shevelev's algorithm for computing A002326.
2, 3, 12, 6, 20, 180, 720, 5, 80, 25920, 20, 360, 43200, 25920, 6220800, 10, 240, 540, 671846400, 540, 57600, 2160, 540, 194400, 155520, 45, 5804752896000, 77760, 14400, 87071293440000, 348285173760000, 15, 960, 12538266255360000, 311040, 139968000, 120, 77760, 18662400, 1679616000, 23219011584000, 108330620446310400000, 60, 4665600, 360, 540, 180
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1023
Crossrefs
Programs
-
PARI
A000265(n) = (n >> valuation(n, 2)); A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m,2)); m = A000265(x+m)); z; };
-
Scheme
(define (A292265 n) (let ((x (+ n n 1))) (let loop ((z (A019565 (A007814 (+ 1 x)))) (k 1)) (let ((m (A000265 (+ x k)))) (if (= 1 m) z (loop (* z (A019565 (A007814 (+ x m)))) m))))))
Comments