A292266 Restricted growth sequence transform of A292265; a filter related to Shevelev's algorithm for computing A002326.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 10, 13, 14, 15, 16, 17, 16, 18, 19, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 24, 34, 35, 36, 37, 38, 39, 11, 16, 6, 40, 41, 42, 43, 44, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53, 43, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 57, 76, 77, 78, 79, 80, 81
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..32768
Programs
-
PARI
allocatemem(2^30); rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A000265(n) = (n >> valuation(n, 2)); A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x,2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m,2)); m = A000265(x+m)); z; }; write_to_bfile(0,rgs_transform(vector(32769,n,A292265(n-1))),"b292266_upto32768.txt");
Comments