A137576 a(n) = A002326(n) * A006694(n) + 1.
1, 3, 5, 7, 13, 11, 13, 17, 17, 19, 31, 23, 41, 55, 29, 31, 41, 61, 37, 49, 41, 43, 85, 47, 85, 57, 53, 81, 73, 59, 61, 73, 73, 67, 111, 71, 73, 141, 151, 79, 217, 83, 89, 113, 89, 109, 131, 145, 97, 211, 101, 103, 169, 107, 109, 145, 113, 221, 133, 193, 221, 141, 301, 127
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..10000
- Vladimir Shevelev, Exact exponent of remainder term of Gelfond's digit theorem in binary case, arXiv:0804.3682 [math.NT], 2008.
- Vladimir Shevelev, Exact exponent in the remainder term of Gelfond's digit theorem in the binary case, Acta Arithmetica 136 (2009), 91-100.
Programs
-
Mathematica
a[n_] := (t = MultiplicativeOrder[2, 2n+1])*DivisorSum[2n+1, EulerPhi[#] / MultiplicativeOrder[2, #]&]-t+1; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
-
PARI
a(n)=my(t);sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1 \\ Charles R Greathouse IV, Feb 20 2013
Formula
It can be shown that if p is an odd prime then a((p^k-1)/2)=1+k*phi(p^k).
a(n) = ord(2,2*n+1) * ((Sum_{d|(2n+1)} phi(d)/ord(2,d)) - 1) + 1, where phi = A000010 and ord(2,d) is the multiplicative order of 2 modulo d. - Jianing Song, Nov 13 2021
Extensions
Edited and extended by Ray Chandler, May 08 2008
Comments