A292268 Compound filter (multiplicative order of 2 mod 2n+1 & number of trailing 1's in binary expansion of 2n+1): a(n) = P(A002326(n), A007814(2n+2)), where P(n,k) is sequence A000027 used as a pairing function.
1, 5, 10, 13, 21, 65, 78, 25, 36, 189, 21, 89, 210, 189, 406, 41, 55, 90, 666, 103, 210, 119, 78, 348, 231, 44, 1378, 251, 171, 1769, 1830, 61, 78, 2277, 253, 701, 45, 230, 465, 900, 1485, 3485, 36, 463, 66, 90, 55, 816, 1176, 495, 5050, 1429, 78, 5777, 666, 777, 406, 1034, 78, 349, 6105, 230, 5050, 85, 105, 8645, 171, 739, 2346, 9729, 1081
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
PARI
A002326(n) = if(n<0, 0, znorder(Mod(2, 2*n+1))); \\ This function from Michael Somos, Mar 31 2005 A007814(n) = valuation(n,2); A292268(n) = (1/2)*(2 + ((A002326(n)+A007814(2*(1+n)))^2) - A002326(n) - 3*A007814(2*(1+n)));
-
Scheme
(define (A292268 n) (* 1/2 (+ (expt (+ (A002326 n) (A007814 (+ 2 n n))) 2) (- (A002326 n)) (- (* 3 (A007814 (+ 2 n n)))) 2)))