cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292298 Sum of values of vertices of type D at level n of the hyperbolic Pascal pyramid.

Original entry on oeis.org

0, 0, 0, 0, 24, 324, 3600, 38148, 398112, 4132596, 42818208, 443356212, 4589665248, 47509091508, 491769434400, 5090291998452, 52689326584800, 545383755284532, 5645229662006688, 58433377222329972, 604839778633231200, 6260653947359090868, 64803587809297981728
Offset: 0

Views

Author

Eric M. Schmidt, Sep 14 2017

Keywords

Crossrefs

Cf. A264237.

Programs

  • Magma
    I:=[0,0,0,0,24,324,3600]; [n le 7 select I[n] else 18*Self(n-1)-99*Self(n-2)+226*Self(n-3)-224*Self(n-4)+ 92*Self(n-5)-12*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Sep 17 2017
    
  • Mathematica
    Join[{0}, LinearRecurrence[{18, -99, 226, -224, 92, -12}, {0, 0, 0, 24, 324, 3600}, 20] ] (* Vincenzo Librandi, Sep 17 2017 *)
    CoefficientList[Series[12*x^4*(2 - 9*x + 12*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
  • PARI
    concat(vector(4), Vec(12*x^4*(2 - 9*x + 12*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017

Formula

a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.
G.f.: 12*x^4*(2 - 9*x + 12*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017