cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292357 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 39, 111, 39, 1, 1, 97, 649, 649, 97, 1, 1, 237, 3495, 7943, 3495, 237, 1, 1, 575, 18189, 86995, 86995, 18189, 575, 1, 1, 1391, 93231, 910667, 1890403, 910667, 93231, 1391, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 02 2017

Keywords

Comments

Equivalently, the number of m X n binary arrays with all 1's connected and at least one 1 on each edge.

Examples

			Array begins:
===============================================================
m\n| 1   2     3       4         5           6             7
---|-----------------------------------------------------------
1  | 1   1     1       1         1           1             1...
2  | 1   5    15      39        97         237           575...
3  | 1  15   111     649      3495       18189         93231...
4  | 1  39   649    7943     86995      910667       9339937...
5  | 1  97  3495   86995   1890403    38916067     782256643...
6  | 1 237 18189  910667  38916067  1562052227   61025668579...
7  | 1 575 93231 9339937 782256643 61025668579 4617328590967...
...
T(2,2) = 5 counts 4 3-ominoes of shape 2x2 and 1 4-omino of shape 2x2.
T(3,2) = 15 counts 8 4-ominoes of shape 3x2, 6 5-ominoes of shape 3x2, and 1 6-omino of shape 3x2.
T(4,2) = 39 counts 12 5-ominoes of shape 4x2, 18 6-ominoes of shape 4x2, 8 7-ominoes of shape 4x2, and 1 8-omino of shape 4x2.
		

Crossrefs

Rows 2..4 are A034182, A034184, A034187.
Main diagonal is A268404.
Cf. A268371 (nonequivalent), A287151, A308359.

Programs

  • Mathematica
    A287151 = Import["https://oeis.org/A287151/b287151.txt", "Table"][[All, 2]];
    imax = Length[A287151];
    mmax = Sqrt[2 imax] // Ceiling;
    Clear[V]; VV = Table[V[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten;
    Do[Evaluate[VV[[i]]] = A287151[[i]], {i, 1, imax}];
    V[0, ] = V[, 0] = 0;
    T[m_, n_] := If[m == 1 || n == 1, 1, U[m, n] - 2 U[m, n-1] + U[m, n-2]];
    U[m_, n_] := V[m, n] - 2 V[m-1, n] + V[m-2, n];
    Table[T[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten // Take[#, imax]& (* Jean-François Alcover, Sep 22 2019 *)

Formula

T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A287151(m, n).