A292411 a(n) = ((prime(n) - 1)/2)^2 modulo prime(n).
1, 4, 2, 3, 10, 13, 5, 6, 22, 8, 28, 31, 11, 12, 40, 15, 46, 17, 18, 55, 20, 21, 67, 73, 76, 26, 27, 82, 85, 32, 33, 103, 35, 112, 38, 118, 41, 42, 130, 45, 136, 48, 145, 148, 50, 53, 56, 57, 172, 175, 60, 181, 63, 193, 66, 202, 68, 208, 211, 71, 220, 77, 78, 235, 238, 83, 253, 87, 262
Offset: 2
Examples
The fourth prime is 7; ((7 - 1)/2)^2 = 3^2 = 9 = 2 mod 7. Hence a(4) = 2. The fifth prime is 11; ((11 - 1)/2)^2 = 5^2 = 25 = 3 mod 11. Hence a(5) = 3.
Crossrefs
Cf. A005097.
Programs
-
Mathematica
Table[PowerMod[(Prime[n] - 1)/2, 2, Prime[n]], {n, 2, 70}]
-
PARI
a(n) = lift(Mod((prime(n)-1)/2, prime(n))^2); \\ Michel Marcus, Sep 19 2017
-
Python
from sympy import prime def A292411(n): return pow((p:=prime(n))-1>>1,2,p) # Chai Wah Wu, Feb 14 2025
Formula
a(n) = 4^(-1) mod prime(n). - R. J. Cintra, Jan 25 2025
Comments