A380421 a(n) is the inverse of 2^3 modulo prime(n).
2, 2, 1, 7, 5, 15, 12, 3, 11, 4, 14, 36, 27, 6, 20, 37, 23, 42, 9, 64, 10, 52, 78, 85, 38, 13, 67, 41, 99, 16, 82, 120, 87, 56, 19, 59, 102, 21, 65, 112, 68, 24, 169, 74, 25, 132, 28, 142, 86, 204, 30, 211, 157, 225, 33, 101, 34, 104, 246, 177, 110, 192, 39, 274
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
seq(1/8 mod ithprime(n), n=2..65); # Alois P. Heinz, Feb 14 2025
-
Mathematica
a[n_] := ModularInverse[8, Prime[n]]; Array[a, 100, 2] (* Amiram Eldar, Feb 05 2025 *)
-
PARI
a(n) = lift(1/Mod(8, prime(n))); \\ Michel Marcus, Jan 25 2025
-
Python
from sympy import prime def A380421(n): return pow(8,-1,prime(n)) # Chai Wah Wu, Feb 14 2025
Formula
a(n) = 8^(-1) (mod prime(n)) for n >= 2.
If prime(n) mod 8 = j in {1, 3, 5, 7}, then a(n) = (1 + (8-j)*prime(n))/8. - Robert Israel, Feb 24 2025
Comments