A292412 Numbers of the form Fibonacci(2*k-1) or Lucas(2*k-1); i.e., union of sequences A001519 and A002878.
1, 1, 2, 4, 5, 11, 13, 29, 34, 76, 89, 199, 233, 521, 610, 1364, 1597, 3571, 4181, 9349, 10946, 24476, 28657, 64079, 75025, 167761, 196418, 439204, 514229, 1149851, 1346269, 3010349, 3524578, 7881196, 9227465, 20633239, 24157817, 54018521, 63245986, 141422324
Offset: 1
Examples
2 and 4 are in sequence because 5*2^2 - 4 = 4^2. 5 and 11 are in sequence because 5*5^2 - 4 = 11^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Serge Perrine, Some properties of the equation x^2=5y^2-4, The Fibonacci Quarterly, Vol. 54, No. 2 (2016) pp. 172-177.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
Magma
&cat[[Fibonacci(2*n-1), Lucas(2*n-1)]: n in [1..30]];
-
Mathematica
Join[{1}, z=50; s=Table[LucasL[2 h - 1], {h, 1, z}]; t=Table[Fibonacci[2 k - 1], {k, 1, z}]; v=Union[t, s]] {Fibonacci[#],LucasL[#]}&/@(2*Range[20]-1)//Flatten (* Harvey P. Dale, Jul 18 2020 *)
-
PARI
Vec(x*(1 + x - x^2 + x^3) / ((1 + x - x^2)*(1 - x - x^2)) + O(x^100)) \\ Colin Barker, Sep 18 2017
Formula
From Colin Barker, Sep 16 2017: (Start)
G.f.: x*(1 + x - x^2 + x^3)/((1 + x - x^2)*(1 - x - x^2)).
a(n) = 3*a(n-2) - a(n-4) for n>4. (End)
Comments