A292414 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k).
1, 2, 4, 72, 272, 2080, 270400, 2146432, 33751296, 403702272, 1103810790400, 17635156690944, 563431073648640, 13515197331283968, 360331952265379840, 37785849814204784082944, 1209091844251972299456512, 77374499118322174520328192, 3713890953695657990811811840
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..183
Programs
-
Mathematica
nmax = 20; Table[SeriesCoefficient[Product[(1+2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
-
PARI
{a(n)= polcoef(prod(k=1, n, (1+2^n*x^k +x*O(x^n))), n)}; for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019
Formula
Conjecture: log(a(n)) ~ sqrt(2)*log(2)*n^(3/2). - Vaclav Kotesovec, Aug 22 2018