cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292418 a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k) / (1 - n^2*x^k).

Original entry on oeis.org

1, 2, 40, 1800, 149024, 21223800, 4609532520, 1414165715200, 581109518753920, 307788983933760954, 204081628466048180200, 165541724073121026987224, 161233041454793035411134240, 185663865439487951708529417080, 249499302292252719726304186789160
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A292304 and A292417.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+n^2*x^k)/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n^2*x^k)/(1-n^2*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^(2*n) * (1 + 2/n^2 + 4/n^4 + 8/n^6 + 14/n^8 + 24/n^10), for coefficients see A015128.

A302836 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^(k^2)).

Original entry on oeis.org

1, 1, 4, 27, 260, 3150, 46872, 825944, 16810048, 387952668, 10010010100, 285526191874, 8921263237056, 303013028232642, 11116057874586840, 438023675344410000, 18451248777413066768, 827408674110381669305, 39353155876513869320412, 1978708139249503877752798
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k^2), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ n^n * (1 + 1/n^3 + 1/n^6 + 1/n^8 + 1/n^9 + 1/n^11 + 1/n^12 + 1/n^14 + 2/n^15 + 1/n^16 + 1/n^17 + 2/n^18 + 1/n^19 + 1/n^20 + 2/n^21 + 1/n^22 + 2/n^23 + 4/n^24 + 1/n^25 + 2/n^26 + 4/n^27 + 1/n^28 + 2/n^29 + 5/n^30 + ...), for coefficients see A111178. - Vaclav Kotesovec, Apr 13 2018
Showing 1-2 of 2 results.