cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292448 Primes q of the form sigma((p + 1) / 2) where p is a prime.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1723, 2801, 3541, 8191, 19531, 86143, 131071, 492103, 524287, 552793, 684757, 704761, 735307, 797161, 1353733, 1886503, 3413257, 3894703, 5473261, 7094233, 7781311, 9250723, 10378063, 12655807, 18143341, 19443691, 22292563, 23907211
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2017

Keywords

Comments

Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma(2^(k - 1)) = 2^k - 1 = p.
2801 is the smallest term of the form 6*k + 5. The next one is 39449441. Note that both of them are of the form 1 + t + t^2 + t^3 + t^4 where t is a prime number. - Altug Alkan, Oct 03 2017

Examples

			Prime 13 is a term because there is prime 17 with sigma((17 + 1) / 2) = sigma(9) = 13.
		

Crossrefs

Programs

  • Magma
    m := 5*10^7; Set(Sort([SumOfDivisors((n+1) div 2): n in [1..2*m] | IsPrime(n) and IsPrime(SumOfDivisors((n+1) div 2)) and SumOfDivisors((n+1) div 2) le m])); // corrected by Amiram Eldar, Oct 08 2021
    
  • Mathematica
    max = 10^6; Select[Union@ Reap[Do[If[PrimeQ@ #, Sow@ #] &@DivisorSigma[1, (Prime@ i + 1)/2], {i, max}] ][[-1, 1]], # < Prime[max]/2 &] (* Michael De Vlieger, Sep 16 2017, corrected by Amiram Eldar, Oct 08 2021 *)
  • PARI
    lista(nn) = {my(list = List()); forprime(p=3, 2*nn, if (isprime(q=sigma((p+1)/2)), listput(list, q));); select(x->(x <= nn), vecsort(Vec(list)));} \\ Michel Marcus, Oct 08 2021