cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292463 Number of partitions of n with n kinds of 1.

Original entry on oeis.org

1, 1, 4, 14, 51, 188, 702, 2644, 10026, 38223, 146359, 562456, 2168134, 8379539, 32459199, 125984039, 489837300, 1907490728, 7438346255, 29042470132, 113522618066, 444199913556, 1739735079466, 6819657196928, 26753893533257, 105034060120469, 412637434996367
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2017

Keywords

Examples

			a(2) = 4: 2, 1a1a, 1a1b, 1b1b.
		

Crossrefs

Main diagonal of A292508.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
          combinat[numbpart](n), b(n-1, k) +b(n, k-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^(n-1) * Product[1/(1-x^k), {k,1,n}], {x,0,n}], {n,0,30}] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

a(n) = [x^n] 1/(1-x)^n * 1/Product_{j=2..n} (1-x^j).
a(n) is n-th term of the Euler transform of n,1,1,1,... .
a(n) ~ c * 4^n / sqrt(n), where c = QPochhammer[-1, 1/2] / (8*sqrt(Pi) * QPochhammer[1/4, 1/4]) = 0.48841139329043831428669851139824427133317... - Vaclav Kotesovec, Sep 19 2017
Equivalently, c = 1/(4*sqrt(Pi)*QPochhammer(1/2)). - Vaclav Kotesovec, Mar 17 2024